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ABSTRACT

A set of natural numbers tiles the plane if a square-tiling of the plane exists using
exactly one square of sidelength n for every n in the set. From Ref. 8 we know that N

itself tiles the plane. From that and Ref. 9 we know that the set of even numbers tiles
the plane while the set of odd numbers doesn’t. In this paper we explore the nature of
this property. We show, for example, that neither tiling nor non-tiling is preserved by
superset. We show that a set with one or three odd numbers may tile the plane—but a
set with two odd numbers can’t.

We find examples of both tiling and non-tiling sets that can be partitioned into
tiling sets, non-tiling sets or a combination. We show that any set growing faster than
the Fibonacci numbers cannot tile the plane.
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1. Introduction

In 1903 M. Dehn1 asked: Can a square be tiled with smaller squares, no two of

the same size? In 1925 Z. Moroń found several rectangles that could be tiled with

squares.10 Dehn’s question was answered affirmatively in 1938 by R. Sprague.12

The problem and its solution were the subject of a memorable paper, “Squaring the

Square” by Tutte,13 reprinted in Martin Gardner’s column in Scientific American

(see Ref. 5). Papers continue to appear on the subject ever since (see for example,

Refs. 2–4).

In 1975 S. Golomb6 asked if the infinite plane can be tiled by different squares

with every side-length represented. In 1997, Karl Scherer11 succeeded in tiling the

plane using squares of all integral sides, but each size is used multiple times.

The number of squares of side n used, t(n), is finite but the function t is not

bounded. Golomb’s question was answered affirmatively in “Squaring the Plane.”

(2008, Ref. 8). The solution opened a host of questions, for example, Which sets

tile the plane? Is there a tiling free of squared rectangles (a “perfect tiling” in the

language of Ref. 13)? Is there a three-colorable tiling? Can the half-plane be tiled?

A second paper9 showed that neither the set of odd numbers nor the set of

primes tiles the plane. It found a tiling free of squared rectangles. It showed that

the set of natural numbers can tile many, even infinitely many planes. But it raised

further questions. Does a superset of a tiling set tile the plane? Can N be partitioned

into two tiling or two non-tiling sets? Can a Riemann surface be tiled?

There are connections between squaring planes and squaring squares (see for

example the proof of Proposition 2). There are also curious disconnects. There is a

clever proof that a cube cannot be cubed.13 But the technique has not yet shown

us that space cannot be cubed.

In this paper, we address and answer some of these questions, focusing on the

structure of tiling sets. In Sec. 1 we show that a set with exactly two odd numbers

cannot tile the plane. This provides an example of sets A ⊆ B where A tiles the

plane and B does not.

In Sec. 2 we find sets with exactly one odd number which tile the plane. We also

find sets with exactly three odd numbers which tile the plane. This shows that all

combinations of sets A, B, A ∪B, tiling and not tiling are possible.

The simplest tiling of the plane uses the set of Fibonacci numbers (with two

squares of side-length 1). The Fibonacci numbers grow exponentially as φn, φ =
1+

√
5

2
. Before it was shown that N tiles the plane, it was conjectured that all tiling

sets had to grow exponentially.7 In Sec. 3 we show that any set growing faster than

φn cannot tile the plane.

Additional questions are posed in Sec. 4.

For simplicity, in this paper we will denote the square of side n with the boldface

letter n.
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2. Two Odds

Proposition 1. Let X be a subset of N containing exactly two odd numbers. Then

X does not tile the plane.

Proof. Let n,m be the odd numbers in X and suppose that there is a tiling X of

the plane using exactly one square of sidelength k for every k ∈ X .

Definition 1. At every corner of a square s in X there is an edge extending away

from s. We’ll call such a line a spoke of s. We will say that s has an integral side

if it has two spokes extending in parallel from adjacent corners.

If s has no integral side we say it is a pinwheel.

If a spoke of m is not also a spoke of n, then it must extend forever, for if, it

ended at a square s,

n

s

it would mean that a sum of side-lengths plus n is equal to a different sum of

side-lengths. This is not possible since all the side-lengths would be even and n is

odd.

If a square s has an integral side, then along that side there must be squares

whose side-lengths sum to s. Since n is odd, n can only have an integral side if it

is adjacent to m. Thus, n and m must each have spokes in at least three different

directions. Then however they are situated in X , n and m must have a pair of

parallel and separate spokes. But these spokes would form an infinite corridor in

the tiling. This is not possible, however, since only a finite number of squares can

fit in a space of finite width.
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Proposition 1 yields

Corollary 1. There are sets A ⊆ B ⊆ N such that A tiles the plane and B does

not.

As noted in Ref. 8, the even numbers tile the plane. We have just seen, however,

that the addition of two odd numbers forms a set that doesn’t tile the plane.

Corollary 2. There are sets A,B ⊆ N such that neither A nor B tiles the plane

but A ∪B does.

An example of such sets are the evens plus two odds and the rest of the odds

(shown not to tile the plane in Ref. 9).

3. One or Three Odds

Proposition 2. It is possible to tile the plane using only one odd square.

Proof. As the proof of Proposition 1 shows, a single odd square in a tiling must

be a pinwheel whose spokes continue forever. Thus to prove the proposition it is

necessary and sufficient that we show it is possible to tile a quarter-plane in four

ways using four disjoint sets of even tiles.

It is certainly possible to tile one quarter-plane. We can start with a 64 × 66

squared rectangle composed of nine squares of sides 2, 8, 14, 16, 18, 20, 28, 30, and

36 (one of Moroń’s rectangles, doubled),

28
20

8

36

18

2

14 16

30

and add squares in a generalized Fibonacci sequence, 64, 130, 194, 324, . . .
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64

130
194

We can tile all four quadrants with multiples of these squares if we can find sets

of multiples that don’t intersect. We claim that multiples of the above sequence of

squares,

a: 2, 8, 14, 16, 18, 20, 28, 30, 36, 64, 130, 194, . . .

by the factors 23, 24, 25, and 26 are disjoint. To check this, first verify that none

of the multiples of the original 9 squares appear in any of the other sequences.

23 24 25 26

2 46 48 50 52
8 184 192 200 208
14 322 336 350 364
16 368 384 400 416
18 414 432 450 468
20 460 480 500 520
28 644 672 700 728
30 690 720 750 780
36 828 864 900 936

If we continue the sequences,

23 24 25 26

64 1472 1536 1600 1664
130 2990 3120 3250 3380

we see that 26an < 23an+1 for n = 10, 11. This pattern must persist since 26an+1 =

26an + 26an−1 < 23an+1 + 23an = 23an+2. This shows that the sequences are

disjoint. We can see, for example, that 24aj > 25ak for j > k ≥ 10 since 25ak <

26ak < 23ak+1 < 24ak+1 ≤ 24aj. Consequently the plane can be tiled with one odd

square and these four multiples of sequence a.
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Corollary 3. There are sets A,B ⊆ N such that A and B tile the plane but A∪B

does not.

Proof. We need only show that it is possible to tile a quarter-plane in eight ways

using eight different sets of even tiles. Then we can form A from the side-lengths of

four of the eight sets plus one odd number and form B from the side-lengths of the

other four sets and another odd number. By Proposition 2, A and B each tile the

plane, but by Proposition 1, A ∪B does not tile the plane.

It is easy to check with a spreadsheet that multiples of the sequence a by 200,

201, 202, 203, 204, 205, 206, and 207 satisfy the earlier constraints.

We now have all possibilities for combining tiling and non-tiling sets.

A B A ∪B

tiling tiling tiling Prop. 2.1,9

tiling tiling non-tiling Cor. 3

tiling non-tiling tiling the evens and the odds, Prop. 1.2,9

tiling non-tiling non-tiling some evens, some evens plus two odds

non-tiling non-tiling tiling Cor. 2

non-tiling non-tiling non-tiling two disjoint sets of odds, Prop. 1.2,9

Proposition 3. It is possible to tile the plane using exactly three odd squares.

Proof. This works by placing three odds as below and creating once again four

regions.

11

3

5

Two are simple quadrants and can be tiled with multiples of the generalized

Fibonacci sequence in the proof of Proposition 2 by 23 and 24. The upper right

region, in the example above, could be tiled by starting with the 14 square, then

squares 20, 34, 54, . . . . The region at the bottom left could be tiled by starting

with the 16 square, then squares 24, 40, 64, . . . . It is easy to check that these four

sequences are disjoint for the first levels.
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23 24

14 46 48 16
20 184 192 24
...

...
...

...
602 690 720 712
974 828 864 1152

1576 1472 1536 1864
2550 2990 3120 3016
4126 4462 4656 4880

We also have that in the last two levels, the smallest is greater than the largest in

the previous level so the sequences will remain disjoint.

4. Excessive Growth

We show here that sets growing faster than the Fibonacci numbers cannot tile the

plane. The Fibonacci numbers, {Fn}, grow exponentially with Fn+1

Fn

→ φ = 1+
√
5

2
.

We will say that a sequence {xn} “grows faster than the Fibonacci numbers” if

from some point on xn+1

xn

> φ.

Proposition 4. Let X be a subset of N and let {xi}i∈N enumerate the elements of

X in increasing order. Suppose that i0 is such that for i > i0, xi+1 > φxi. Then X

doesn’t tile the plane.

Proof. First note that for i > i0, xi+2 > xi+1 + xi as follows: We have xn+1 =

φxn + ǫ and xn+2 = φxn+1 + δ with ǫ, δ > 0. Then

xn+2 = φ2xn + φǫ+ δ

= φxn + xn + φǫ+ δ (φ2 = φ+ 1)

> φxn + xn + ǫ+ δ

= xn+1 + xn + δ

> xn+1 + xn.

Note also that for i0 < i < j < k < l, we will have

xi + xl > xj + xk,

since xl > xj + xk.

Now suppose there is an X-tiling X of the plane. We will show that this leads

to a contradiction.

Definition 2. A clump is any finite set of squares in the tiling such that

(1) the squares form a simply connected seta in the plane,

(2) no square in the clump is adjacent to a smaller square outside the clump,

aA region of the plane is simply connected if it has no holes.
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(3) the squares with sides {xi}i≤i0 are well inside, i.e. not on the edge, of the clump.

It should be clear that given any set of squares in the tiling, a clump can be

formed containing the set.

Next we observe that X generates a planar graph. The corners of the squares in

X are the vertices of the graph. Vertices are adjacent if they are connected by an

edge or a part of an edge of a square.

X also generates directions for some of the edges in the graph. If a vertex v has

order 3, then let the one edge from v which is perpendicular to the other two edges

be given the direction pointing away from v.

v

Note that no edge will be given two different directions, since two vertices of order

3 pointing at each other can occur only when two squares of the same side-length

are used.

For the same reason, a directed edge cannot point to a vertex of order 4. Thus, there

are no sinks, that is, paths consisting of directed edges do not end, they continue

forever. They can, of course, loop.

Note that two paths can join (as above), but only in the case where squares of side

a and b are lined up with a square of side a+ b.

By definition, this can only happen inside a clump.



October 14, 2011 10:59 WSPC/Guidelines S0218195911003792

Possibilities and Impossibilities in Square-Tiling 553

Definition 3. A directed path is born if it has a vertex with no edge leading to

it.

Claim 4.1. No directed path in the graph which is on the boundary of or contained

in the clump can exit the clump.

A directed path that exits a clump can only do so along an edge. In the figures

below, the shaded regions indicate squares in the clump.

The directed edge shown above is not in the clump. If any directed edge is connected

to it,

then there would be a square outside the clump adjacent to a larger square in the

clump, violating the definition of clump. This proves the claim.

Paths inside a clump must eventually loop in the clump. Thus, any path in a

clump must join itself at some point. Note that no path can grow infinitely, since

any path can be included in a clump and can’t leave it.

Let n be the number of instances of a+ b = c, a, b, c ∈ X . It follows that there

can be no more than n paths in X , since a path can only join itself when the side
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of one square is the sum of the sides of two other squares. Thus, there can be only

a finite number of births in X .

Definition 4. A tidy clump is a clump that contains all births of X inside the

clump (not on the edge).

Claim 1 guarantees that tidy clumps exist. For the remainder of this proof, C

will be a tidy clump.

Claim 4.2. Any square not included in or adjacent to C must have at least one

integral side.

Suppose that b is a square outside and not adjacent to C and that b has no

integral side. Then b is a pinwheel. We must have that b has only one neighbor on

each of its sides as follows. It can’t have three neighbors or there would be a birth

outside C (circled).

b

And it can’t have two neighbors—if b borders on c, d and e as below,

b

c d

e

then d and e must share a corner, otherwise a path will be born at the top right-

hand corner of b. But that would give us that c + d = b + e which is not possible

outside of C.

Now let c be the smallest neighbor of b.
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b

c d

e

Again, d and e must share a corner (or there would be a birth at the bottom

right-hand corner of c) and again c+ d would equal b+ e. This proves Claim 2.

Claim 4.3. Any line of edges outside or on the border of C is finite. It has a corner

at each end. It must have exactly two corners along it. And there must be one square

on one side, three squares on the other.

The prohibition of births precludes more than two corners along the line.

If the edge had no corners along it, we would have two squares with the same

side-length. If the edge had only one corner along it, we would have numbers b = c+d

with b, c and d outside C. Finally, if we had two squares facing two, we would have

numbers b+ c = d+ e with b, c, d and e outside C. This establishes the claim.

Let a be the smallest square not in C. By Claim 2, a is adjacent to C, for otherwise

it would have an integral side and hence a neighbor smaller than a, contradicting

the choice of a.

Claim 4.4. Any edge of a touching C is an integral side meeting three squares

from C.

By Claim 3, every edge of a is either an integral side, one square facing three

or else is one of three squares facing one. The latter is impossible by part (2) of

the definition of clump. Thus the edge of a is one square facing three. Any square

adjacent to a along that edge would be smaller than a, hence in C by the choice

of a.

a
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Claim 4.5. C does not abut a along adjacent edges of a.

By Claim 4, the two edges would be integral sides which would necessitate a

birth along a.

a

Claims 4 and 5 lead us to a progressive expansion of C. If a is adjacent to C on

just one side then C1 = C ∪ {a} is still a tidy clump. If a is somehow adjacent to C

on more than one side so that there is a hole in C ∪ {a}, then a new tidy clump C1
can be formed by including a and all the squares in the hole. In the first case, C1
will have the same number of corners as C. In the second, C1 will have fewer corners.

We can now take the smallest square not in C1 and repeat the procedure, forming

C2. Continuing in this way, we construct a sequence of clumps. The clumps grow

larger and the number of corners either decreases or stays the same. Thus, for some

n0, the number of corners in Cn, n ≥ n0, is constant.

Claim 4.6. For n ≥ n0, Cn is convex.

If Cn is not convex, there would be a square c not in Cn but adjacent to Cn on

two adjoining sides. But for some m > n, c will be the smallest square outside Cm,

contradicting Claim 5.

The only convex shape for a clump is a rectangle. Then the smallest square c

outside Cn0
must fit on one end.

c

The smallest square outside of Cn0+1 can’t fit on the opposite end (it can’t be the

same size as c), so it fits on a neighboring side.

c

Since the smallest square outside of Cn0+2 must face three squares in Cn0+2 must

now fit on the opposite end.
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c

And now there is no place for the smallest square outside Cn0+3; the bottom edge

must have at least four squares on it. This contradiction concludes the proof of

Proposition 4.

5. Open Questions

We have shown that there exists a tiling using three particular odd numbers. Can

this be done with any set of three odd numbers?

We conjecture that it is possible to tile with n odd numbers if n 6= 2. It is

possible to tile the plane with 7, 8, or 9 odd squares using squared rectangles. Is it

possible to tile the plane using exactly 4 odd squares?

We have shown there exists a tiling using one odd number and then a collection

of the even numbers. Can the plane be tiled using the entire set of even numbers

and one odd number?

We have shown that there exists a tiling using mostly even numbers and a finite

collection of odd numbers. Is there a tiling using mostly odd numbers and a finite

collection of even numbers?

We know that the set {n : n ≡ 1 mod 2} does not the tile plane and that

{n : n ≡ 0 mod 2} does. Clearly {n : n ≡ 0 mod 3} tiles the plane, but what

about {n : n ≡ 1 mod 3}, {n : n ≡ 2 mod 3}, and {n : n ≡ 1, 2 mod 3}? And

what about other moduli?

For all of the tilings shown in this paper, in Ref. 8, and in Ref. 9, the ratio of

successive members of the tiling set approaches either φ or 1. We know that φ and

1 are bounds on the ratio of successive terms. Given r, 1 < r < φ, can we tile the

plane using sets where the ratio of successive terms approaches r?
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