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INTRODUCTION TO THIS BOOK

This book deals with all aspects of Squared-Rectangles and Squared-Squares.
Some of the content is in the form of Information and statistics, rather than general principles.

It is an inexhaustible subject.

The book is concerned with how Squared-Rectangles are in Theory and Practice, and it will be seen that whereas both are relevant and
true, they often vary. Often constructions can be viewed in different ways.
To show one example, just look at the following!

A B C D E

In A & B, Patterns have been drawn at random and in C & D, actual Element numbers have been calculated.
Finally, E square has been redrawn to ignore the zero.
Which of the above is Theory, and which Practice?
Which are the ‘same’ and which ‘different’?
Much depends on how we view it! Both can be true according to different viewpoints.
1. Arguably A B C D & E are different forms of the same Square.
2. A & B arguably represent the same Square.
3. A & B in Practice have been drawn sensibly ignoring any squares adjacent to each other, but
4. C & D arguably represent the same Square, but
5. C & D have patterns which are strictly illogical which may be regarded as Theoretic rather than Practice.
6. E may arguably be regarded as more correct than C or D so is true to Practice. But are there 4 squares or 5? Well both! There are 5 in
theory with a Valid pattern, but 4 in Practice with an Invalid one!
Theory and Practice often vary in this subject, but often Theory is more useful than the Practice.
The study of Squared-Rectangles & Squares is a very fascinating one as this book will reveal.
Before 1936 little was known about this subject, but a huge amount has now been found thanks to today’s powerful Computers.
Today a huge amount and many Solutions can be downloaded from the Internet.



VARIOUS DEFINITIONS BRIEFLY EXPLAINED
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1. SCALED DRAWING shown above as the Natural shape but more convenient for display is however:
2. COMPRESSED GRID DRAWING shown left. 3. __ Layer (horizontal) 4. | Layer (vertical) 5. REDUCED DIMENSIONS 104 x 104
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6 . SQUARED-SQUARE

7. Crossover e.g. __|18__ 8. 61 etc. ELEMENTS 9. ORDER 24 (i.e.24 Elements)
18|11 |

9. : SLIDE (2 1lines 1in same vertical distance)

10. .. SLIDE (2 1lines in same horizontal distance) - not shown

11. IMPERFECT (Duplication of some Elements e.g. 1,6,8,18,43

12. PERFECT (No Duplication of Elements as 1in drawing above.

13. TRIAD i.e. 3 Elements positioned as 61 43 and 18 at left.

14, SQUARED-RECTANGLE - 1i.e. Dimensions vary e.g. 33 x 32 unlike those shown.
15. FULL DIMENSIONS e.g. Happens to be 37632 x 37632 for solution above (reduces
[21] 112 x 112. 16. REDUCTION INDEX e.g. 37632/112 which 1is 336 in solution above.
17. SQUARE INDEX e.g. 37632/112/112 which 1is 3 1in solutions above.

18. BOUWKAMP CODE e.g. (61,43)(18,25)(43,18,11,7)(8,9,15)(7,4)(6,5,1)(4,6)(25)(1,8)(7)(21)(15) but in this book -

19. CODE +61,43 .18-25, -43.18.11.7 etc... where '+' denotes corner Elements '-' side and '." Internal ones.

20. DISTORTED ELEMENTS (Showing Elements in varying rectangular shapes as here though all Squares in reality).
21. VALID SOLUTIONS shown here. INVALID either have Zero Elements or Adjacent Elements |1]|1] as shown here.
22. COMPOUND Solutions contain at least one rectangle inside the solution.

23. SIDES INDEX 2-2-4-4 denotes number of Elements bordering the 4 sides (or 3-3-3-4) in 1st solution).
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A. DEFINITIONS & BASICS ON RECTANGLES

A1. SQUARED-RECTANGLES

A1.1. INTRODUCTION TO SQUARED-RECTANGLES

A Squared-Rectangle is shown below and comprises a quantity of individual squares, termed Elements - so joined together that they form
a rectangle without any gaps occurring. It is like a jigsaw puzzle with square pieces that fit together perfectly.

A Squared-Rectangle may have any positive number of Elements. Below there are nine.

They vary in shape from extremely elongated to exactly square, the latter being termed Squared-squares.

Some rectangles have Elements each with a different size, but others have Elements duplicated to a lesser or greater extent. This Book
has Text and Drawings areas. The terms “above” and “below” always refer to Drawings as follows:- “above 2” means the second item in the
last drawing. “below 3” means the third item in the next drawing, and so on.

The symbol @ denotes further references on the same subject.

Words used carrying a particular meaning in this book are given an initial capital letter, Squared-Rectangle, Elements and Perfect being
examples.

Here is a Squared-Rectangle of 9 separate squares some of which have repeated values, with Dimensions of 15 across and 11 down.
[9]115 x 11

6 4 5

A1.2. EASY IDEA OF SQUARED-RECTANGLES
What makes this subject attractive is that the idea of Squared-Rectangles is simple,

A COMBINATION OF SQUARES (CALLED ELEMENTS) FORMING RECTANGLES

With no gaps remaining. That is it!
Or if you prefer,
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RECTANGLES DISSECTED INTO SQUARES

A1.3. SQUARED-RECTANGLES ARE A COMPLICATED & ABSORBING STUDY!

Despite the easy description above, the study of Squared-Rectangles is often difficult, involved and endless in scope keeping
mathematicians occupied forever!

The more the One finds, the more amazing this subject hecomes. As soon as something is solved, more features usually arise!

Some theories may be proved by algebra. Other ideas seem obvious but a formal proof hard to find ...

A frustrating feature of this subject is the times an interesting relationship is found and upon inspection is true for many Rectangle
Solutions. Then the relationship is found to be untrue with other Solutions.

This intention of this book is to cover all aspects of this subject and so in some cases the Reader may think the feature interesting but
what use or relevance is it? Possibly none at all!

On the one hand is the general feature of how these Rectangles work - on the other is data given to provide statistics - some interesting
and some not at all. All types of Squared-Rectangles & Squared-Squares are considered in this Book with the least interesting quickly
dismissed.

A1.4. WHAT HAVE THESE TO DO WITH SQUARED-RECTANGLES?
1. Planar Electrical Circuits?

2. A postman’s best route round a circuit of roads?

3. The Fibonacci Series1123581321345589...7

4. Chambered Nautilus and other Spiral Sea shells?

5. The number of petals in a flower?

6. The ideal proportions of the human face?

7. The Golden Ratio 1.618... and its reciprocal 0.618...?

8. God’s Order in Creation? Surprisingly much!

A2. FORMATS DIFFERENT FROM SQUARED-RECTANGLES

There are forms allied to this subject, not actually “ Squared-Rectangles” but worth mentioning -
OTHER CONSTRUCTIONS ALLIED TO SQUARED-RECTANGLES BUT OUTSIDE THE SCOPE OF THIS BOOK:-

A2.1. TRIANGLED-RECTANGLES
The example shown below is a Square though Rectangles also exist:-

10
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9 4 8 [13] 26 x 26 SQUARE
&2 For "-2" read Square Root of 2
972 82 | The Triangles are all
[ Right Angles Isosceles ones.
6- 5-2
34

A2.2. RECTANGLED-RECTANGLES
Although this book is concerned with Dissection into SQUARES the diagram above shows a Dissection into RECTANGLES.
In this case each have the ratio of 2: 1 or 1 : 2, with some arranged horizontally and the rest vertically.
Numerically there are less of these Solutions than in Squared-Rectangles. There are 2 solutions for Order 10.
The Ratio does not have tobe 1:2 and couldbe 1:3,1:5,4:7 etc.
Rectangled-Rectangles are not part of this study but may be useful in its general theory.

34 0 | 4 14 [10] 62 x 31
g |7
= RECTANGLE
20
6 L DISSECTED
BY RECTANGLES
28 3 ° 12 |24
22
14 11
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A2.3. CYLINDRICAL SQUARED-RECTANGLES

If a Squared-Rectangle is constructed in such a way that its right side can be swung round to join its left side and fit then a Cylindrical
Squared-Rectangle will be formed. Of course, any given SR can be drawn and then bent round so that the left and right borders meet, and
similarly the top with the bottom! See Below 2. But this is of little interest.

< < ™ EXAMPLE OF A FORM OF

TRUE CYLINDRICAL ‘
SQUARED RECTANGLE
LHS--> 5 6 IS SHOWN AT LEFT

AT RIGHT [9] 15 x 11 —
L |S TAKEN AND
5 MERELY 'BENT ROUND'

<--RHS 6
V ~_ |

A ‘True’ CSR is one where the original “unwrapped” rectangle has a kink as in above 3, (or number of kinks) on the lhs repeated exactly
on the right hand side.

Constructions are found where cylinders connect vertically and horizontally. But trying to connect both at the same time ends in disaster!
For further information on this subject see Section Q.

12



13

A2.4. TRIANGLED TRIANGLES

These have been found, and some of these are “Perfect” if this term is construed to include no more than 2 triangles of a particular size.
Where two exist one is up-side-down in relation to the other and may be regarded different in this sense.

TRIANGLED- ORDER 14
TRIANGLE
39 x 39 x 39
The Smallest
One Known

19

A3. USES OF SQUARED-RECTANGLES

A3. PRACTICAL APPLICATIONS

Some areas of recreational mathematics have little or no practical application, but surprisingly Squared-Rectangles do as that they are
closely related to planar Electrical Circuit theory!

13
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It will be seen later that every Squared-Rectangle has two corresponding electrical circuits. Thus in this study there is a dual theory
exists, of Squared-Rectangles on the one hand and electrical circuits on the other. See Section B for details.

There is said to be a practical application for Postmen! With an enclosed network of roads to cover a route may be found which visits
each road twice (i.e. for both sides of the road).
To do this we draw a ‘box’ of roads as a planar circuit and choose a top and bottom as ‘poles’. We then have to transform this into a Squared-
Rectangle (calculation of the Elements is unnecessary). Then we draw a number of Spider Trails over each Element.

A4. POTTED HISTORY OF SQUARED-RECTANGLES

A4. BACKGROUND TO SQUARED-RECTANGLES SUBJECT

In the famous Canterbury Puzzles, Dudeney made a statement that suggested that to dissect a square into smaller squares all of different
sizes was impossible. The mathematician Luzin also claimed the same impossibility.
This challenged four students in 1936 - 1938 to study the subject in depth, named C. A. B. Smith, A. H. Stone, W. F. Tutte and R. L. Brooks.
They ultimately discovered and recorded several Squared-squares, proving it can be done.
In fact, once no limit is put on the amount of Elements used, the quantity of possible Squared-squares is infinite!

Squared-Rectangles are easier to discover than Squared-squares. However inferior types of Squared-squares can be found easily from
known solutions.
All existing Squared-Rectangles up to and including Order 15 have been calculated by me for reference.
All solutions to and including Order 18 have been calculated by others. (Now higher than this).

In this subject it is necessary to be precise in defining the various features e.g. what is meant by the “largest” rectangle for a particular
Order? Does it mean the Squared-Rectangle with the greatest longer side, or the one with the greatest overall areal!

The elementary section that follows introduces the subject by defining various features of Squared-Rectangles.

Some features will seem obvious but lead the way to more productive study. Other features are mentioned in passing, not being that
important but part of the entire study. Invalid rectangle is an example.

AS5. TERMS USED IN SQUARED-RECTANGLES

Many terms in Squared-Rectangles need to be defined, and most of the terms used by Tutte, Smith, Stone and Brooks form the basis of
this book for example, Simple, Imperfect, Perfect and Complexity. Others have been invented by me such as Cornex, “Invalid”, “Elongation”,
Reduction Index, Twin Rectangles and many more.

14
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A5.1. SQUARED-RECTANGLE
A Squared-Rectangle is a rectangle divided up into a number of squares termed Elements in such a way that no gaps result.
Unless qualified, the term Squared-Rectangle covers a wide range of types.
They can be illustrated in a variety of ways, namely
1. Such Rectangles can be drawn showing the individual squares accurately drawn or distorted as oblongs.
2. They may exclude the values (as under A1) or more usual include the values.
3. The values could also be included in appropriate locations with the dissecting squares absent. This has limited value.
4. They may be shown as a Smith Diagram - in fact by two different Smith Diagrams. See Section B for explanation.
5. They may be recorded in a non-geometrical form as a Formula of numbers. There are several useful formats possible which are
concise, save space and can be typed out without the need for any geometry.

A5.2. RECTANGLE
Although a Square is strictly a rectangle with the vertical and horizontal sides equal, the term in this book will assume that the vertical and
horizontal sides are unequal even if shown to be square after calculation. Otherwise it is a square.

A5.3. DIMENSIONS

The Dimensions of a Squared-Rectangle are measured in units that are always positive integers. Any solutions calculated to be otherwise
are easily adjusted to positive integers. In passing, it is observed that any solution can be given negative Elements or even Zero Elements
throughout without the shape or structure being altered.

Thus “106 x 105” denotes a rectangle 106 units along and 105 down.

The horizontal dimension is deemed to be the larger one in this book and always shown first. See also full and reduced dimensions
further on.

A5.4. ELEMENTS

These are the values of the individual component squares that form the rectangle or square.

The value of each Element is regarded as acting both horizontally and vertically so an Element of 10 is 10 units across and also 10 units
down.

A5.5. CORNER, OUTER AND INNER ELEMENTS
Inner Elements are those which do not touch any side of the rectangle. The others are Outer, four of course being Corners.

AS5.6. LARGEST & SMALLEST ELEMENTS

15
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The smallest Element (which must be at least zero in size and not regarded as negative), is that one that is smallest, and is always an
inner Element. The largest Element is very often in a corner, less frequently on a side, and infrequently internally. In theory negative inner
Elements often arise, but in practice can always be made positive by easy slight adjustment of the pattern.

A5.7. ORDER
The Order (capital O) is simply, the total amount of Elements contained in a Squared-Rectangle.
Always a positive integer it is the total quantity of inner and outer Elements.

The Order number is shown inside square brackets [ ], e.g. as [9] 69 x 61.

A5.8. FORMULA

The Formula, later fully explained in A11, is a set of bracketed numbers separated by commas that are written in a convenient Order, from
which the Squared-Rectangle can readily be drawn.
It takes much less room to write this than draw the actual solution, and a useful means of recording solutions.

The Formula known as Bouwkamp’s Formula can be expressed in different ways and | prefer to replace brackets with “:” and show “+”
before Corner Elements and “-” before Side Elements.

A5.9. NUMBER OF SIDES OF RECTANGLE
There are Four of course.

A5.10. TWIN RECTANGLES, OR TWINS
These are two or more different solutions with the same dimensions. Three twins means three solutions of identical size. @G

A5.11. SIMPLE AND COMPOUND RECTANGLES

A rectangle is termed SIMPLE if does not contain any smaller rectangle anywhere inside the rectangle.

COMPOUND solutions contain at least one smaller rectangle.

Any solution containing adjacent Elements is always Compound, but a complicated Squared-Rectangle made into a larger one by the
addition of further Elements round two or more sides is also Compound.

A5.12. PERFECT AND IMPERFECT RECTANGLES

A rectangle is termed PERFECT if every Element is a different size.

In an IMPERFECT solution at least one of the Elements is duplicated at least once. Some Imperfect solutions have heavy duplication and
are regarded as highly Imperfect whilst many have one duplicated Element only.

16
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A5.13. VALID AND INVALID RECTANGLES
See later for full explanation. An Invalid solution is either one which contains zero Elements or contains at least one Element which has

another Element of the same size immediately adjacent to it.
INVALID solutions are inferior to VALID solutions, and always Imperfect. @A4.7

A5.14. SYMMETRIC RECTANGLES

These are solutions which when divided into halves or quarters each half or quarter is identical.

The solution may or may not have a central Element which is common to each half or quarter.
Solutions may have 2-fold or 4-fold symmetry. In the 2-fold cases, the symmetry may be either vertical or diagonal (the rectangle divides Il or x
through the middle). Such solutions are always Imperfect by definition. @E9.10

A5.15. DIVISION OF MAIN GROUPS

DIFFERENT TYPES OF CONSTRUCTIONS SHOWN GRAPHICALLY

CISS SPSR C=COMPOUND 1=IMPERFECT P =PERFECT

CPSR & SPSS \ / SR = SQUARED-RECTANGLE SS = SQUARED-SQUARE

TO BE FINISHED

17



18

CISS Compound Imperfect Squared-Squares SPSR Simple Perfect Squared-Rectangles

A5.16. BLIND & WORKED RECTANGLES
BLIND Rectangles are a pattern of Elements drawn at random without being calculated out by Algebra.
WORKED Rectangles are those with Elements calculated .
It is possible to ascertain some information from BLIND Rectangles. See later for explanation of 1 to 5
1. Trails can be drawn and the quantity of them ascertained. See later for meaning of Trails.
2. Elements can be found for possible values of x, y z etc by inspection. Usually they can be found within a single trail.
3. Where any single Trial crosses any Element twice, the value of that Element is always an Even number.
4. In some cases each Element can be shown as an Odd value or an Even value.
5. If there is a Pentad or Octad End then the corresponding Dimension will be divisible by 4 or 15 respectively.

A6. MORE SQUARED-RECTANGLE TERMS

A6.1. CORNEX, SIDEX AND CENTREX RECTANGLES
The largest Element in a Squared-Rectangle is often situated in one of the corners - CORNEX, or it may border a side - SIDEX.
Less frequently the largest Element is internal (not touching any side) - CENTREX. @A3.1 @C3

A6.2. INNER-OUTER ELEMENTS RATIO
This is the ratio obtained by comparing the amount of external Elements with the amount of internal ones, and always shown in this form -
6:7.

A6.3. RATIO
RATIO unless otherwise defined, means the ratio obtained when the largest Element value is divided by the smallest Element value, in the
Squared-Rectangle and is shown to two decimal places, e.g. 6.17

A6.4. UNKNOWNS -xyzab.. ETC.

In using algebra to calculate the relative positive values of the Elements in a Squared-Rectangle, at least two UNKNOWNS need to be
employed, and sometimes more.
An xy solution uses two Unknowns, xyz three Unknowns, xyza four Unknowns, xyzab five Unknowns and so on.. This book refers to xy
solutions and the like. @C1.1 @C3.4

A6.5. DIVIDING LINES

18
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These are defined later.

A6.6. GULF LINES
These are defined later.

A6.7. REDUCTION INDEX

When calculating a rectangle using algebra, a set of Element values is obtained. Often all the Elements have a common factor (for
example all may divide by 3 and remain integers) in which case the rectangle can be shown with reduced Elements. Putting the same idea
differently, the values for x, y etc. may have a common factor e.g. x =12 and y = 24 cancels down to x =1 and y = 2, giving a Reduction Index of
12. This common factor is termed the REDUCTION INDEX. It is a positive integer often 1 or 2 but can be a huge number.

A6.8. FULL DIMENSIONS
These are the numerical horizontal and vertical values of the rectangle after it has been calculated and before any possible reduction is
made. These are shown in the form 368 x 255. @F2.4

A6.9. REDUCED DIMENSIONS

These are the numerical horizontal and vertical values of the rectangle after any possible reduction has been made. In other words, each
Element in the full rectangle has been divided by the Reduction Index. Where the Reduction Index is 1 the Full and Reduced dimensions are
the same.

A6.10. ELONGATION

This is the ratio of the shorter side divided by the longer side and is expressed as a percentage to two decimal places.

The maximum percentage of 100% occurs when the solution is a square.
Within any given Order a wide range of Elongation exists (e.g. 46.60% to 100.00% for Order 13). As the Order increases so does the range of
possible Elongations.

A6.11. TWO-BY-ONE RECTANGLES
These are Rectangles exactly twice as horizontal as vertical (elongation of 50.00%) . Similarly Three-by-One rectangles are possible but
very hard to find! Even up to 12 by 1 have been found. @J

A6.12. SEMI-PERIMETER
This is the numerical value of the horizontal side plus vertical side.
This is important in the theory of this subject.
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Note that the Semi-Perimeter relates to the full, not reduced dimensions. @F2

A6.13. CROSSOVER POINTS

A CROSSOVER point occurs when a rectangle has four Elements all meeting at a single point.

On the Internet it is described as a CROSS. This occurs in practice, but not in theory, in all Invalid solutions. However Crossovers are
more interesting in Valid and Simple solutions, where they are relatively unusual.

23 15 22

CROSSOVER HERE

r 9 20
19 4 '3
5

10

[19] 60 x 42 R270 SHOWING A CROSSOVER (CIRCLED)

A6.14. USE OF DISTORTED DIAGRAMS IN RECTANGLES (DISTORTION)
There are several advantages in purposely not drawing Squared-Rectangles to scale, and showing Elements which are really square as
long oblongs:-
1. Small Elements such as 1 or 2 can become minute and difficult to insert numerical values. See above.
2. Zero Elements can only be sensibly shown by using distortion.
3. Distorted diagrams serve to show the theoretic patterns for Invalid solutions.
4. To demonstrate various fixed patterns or endings even though negative or zero Elements may arise.
5. Most important of all, many rectangles can be drawn in a suitable and readable way by using Distortion. Often it enables a rectangle to be
drawn smaller and still be easier to read.
Drawing squares as very elongated oblongs does not invalidate the rectangle, but can be very useful.

A6.14.1. GRID DRAWINGS FOR SQUARED-RECTANGLES
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The following system of Distortion (found by me, but also by others on the Internet) is a most successful way of displaying Rectangles in
a fashion that smaller Elements appear bigger and the larger ones smaller than normal. Another advantage is that the pattern for any given
Rectangle is fixed and can be produced easily on squared paper. An example is shown:-

0 21 29 34 39 41 42 54 DISPLAY OF [13] 54 x 50

25
29 29
3 12 13
37
38 5 |27 <-- This
3921 13 pattern 3 12 13
3 12| Is simply
e drawn from 21 13 =
50 8 an 8 by 8 g | 12
Grid like

FULLGRID SYSTEM the above! SCALED SYSTEM

+29 +25 TEXTUAL DRAWING. A neat way of producing a visible Squared-Rectangle using text but no
12 .13 geometry. Here the corners are preceded with +, with - and internal Elements with .
+21.8  Note the fixed columns (7) as well as rows (7).
-13..5 .2. In any given Rectangle the number of Columns + of Rows = the Order + 1.
A +12
3
8

In the GRID DRAWING, a set of horizontal numbers - top to bottom - and vertical - left to right - are shown equidistantly. To enter Element
29 the lines intersect at 29 across and 29 down. To Enter 25 the lines intersect at 54 across (29 + 25) and 25 down, and so on. In some
Solutions the matrix will be much more elongated than in this Example.
1. With all numbers omitted, | have no difficulty reducing the size to just half an inch square - but just imagine if the Scale Drawing was
reduced to this size! The Element 1 would be .01 inch square!
2. With only the outside numbers - the Coordinates - showing the Rectangle can be drawn in just 1.5 x 1.5 inches in small handwriting. In small

print 1” square is easily possible.
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3. With Coordinates and Elements shown - this solution can still be printed just 1.5 x 1.5 inches.

Why all this concern about small size? It is to solve the problem of how to store many thousands of Squared-Rectangle results
graphically rather than by a listing of numbers, without taking up a huge amount of space.
| have thousands of Solutions drawn on paper 6x 5%z inches - showing only one at a time, and the data is still cramped. And the paper is over 6
feet thick!
It is useful to note under 2. Coordinates and Pattern only, that the Elements can be easily calculated from this data.

The Vertical Intervals may be one amount and the Horizontal another. Thus another benefit of this system is that Rectangles can be
presented in a predetermined size on a Computer screen - regardless of the Order or Dimensions involved.

A6.14.2. RECORDING GRID DRAWINGS TO ENABLE RECTANGLES TO BE DRAWN

| eventually found a good and easy way of writing down SR’s in such a way that the SR can be drawn easily, although clear that many
squares would need to be distorted into rectangles.

But by using the Grid and adding some code letters before each Element it is possible. a=1 b=2 c¢=3... with across before down. Thus
aacdb is a rectangle drawn from aa to cd in the Grid as Top Left to Bottom Right, with 6 inserted. See Below.

a b ¢ d f

& A For cbde3 draw a

b / 5 Rectangle from

c 6 ;l/ cb to de and insert 3

q 3 L’f For bedf4 draw a
/l/ﬁ 6 Rectangle from

€5 . be to df and insert 4

f

NOTE: - The above Solution could be recorded as briefly as “[9] 15 x 11 abc4e5:c3d1:d6:a5b1:b4” a USEFUL FORMULA. The ACROSS
coordinates do not need to be included since the first group (6 4 & 5) will always be coordinate. A & : will then denote b the next : ¢ and so on!
Using FOUR letters enables any Element to be drawn in easily - and independent of all other Elements. Thus the Elements can be listed in any

pattern we please, e.g. they could be ascendingas 11344556 6 or as calculated
134564165.0rTop DownFormula645316514etc.

A6.14.3. TWO TYPES OF GRID DRAWINGS HAVE TO BE CONSIDERED

The use of Grid Drawings is an excellent way of displaying SR’s conveniently and compactly. However once they are looked at in detail
certain types of Rectangles present a slight challenge, as the Grid Drawings can be drawn in two distinct ways.
1. Although Squares could be displayed two ways - horizontal or vertical, this problem is overcome if we use using the higher series of
numbers along the top. E.g. 100 59 42.. is greater than 100 45 61.. or 100 59 36 .. If this distinction is not made we have two Grid Patterns for the
same Square which is unhelpful.
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2. Zero Solutions. Though it is better to show the Zero Elements rather than omit them, it means a particular type of Grid Drawing is necessary.
3. Invalid Solutions.
4. Solutions containing Slides
5. Solutions containing a Crossover.
6. |-----| Type Symmetric Solutions which by their construction contain Slides.
Consider the random drawing of a Squared-Rectangle pattern. Often the actual calculated Rectangle
1. Will be the same shape (not requiring any modification)
2. Not contain any zeros
3. Contain any negative quantities
4. No Slides
5. No Crossovers.
If so the Grid Pattern is fixed, easily determined with only one unmistakable format possible.
But in other cases we then have a choice of using the FULLGRID or the CLOSEDGRID Pattern.
e.g. [10] 8 x 6 INVALID solution -

4 4 4 4
1
1 ! 1L ——o0
0] ~— |
1|3 gets
3 3
3 1 1 1 lost!
2 2
FULLGRID SYSTEM CLOSEDGRID SYSTEM

The first shows 7 horizontal & 6 vertical lines, and has the advantage of showing the original pattern, but the lines appear illogical e.g. the
two 4’s finish on different levels as if different - but are the same!

The second is misleading as it shows just 5 horizontal & 5 vertical lines, and the Element 0 disappears. But it does show what we may
argue, the correct positioning of the Lines. This has 2 Crossovers (no Slides).

Which is better? The FULLGRID SYSTEM is better one to use for INVALID SOLUTIONS by which we mean
1. Those where Zero Elements occur.
and/or 2. Those where Adjacent Elements occur.
This is the Theoretical one, whereas the CLOSEDGRID SYSTEM which is the Practical one!

In the case of VALID SOLUTIONS the CLOSEDGRID SYSTEM is probably better as it is simpler, smaller and easier on the eye.
In my catalogue SRSMALL | have used the CLOSEDGRID SYSTEM but shown dots to indicate where

23




24

1. Crossovers occur
2. Where Slides occur.

A6.14.4. DISPLAYING GRID SYSTEMS - 2 TYPES OF HORIZONTAL SPACING
We saw Above a Solution produced with the Vertical Columns evenly spaced. e.g. |21
|10 16 |5 | etc...

1. EVEN SPACING

If you drew Solutions in a squared exercise book you would have to use this system..

But a problem with this is that either all Element Numbers will need to be shrunk (if they are to be the same size),
or vary in size with larger numbers being cramped sometimes in small spaces!

Probably better is to have e.qg.

121__|

|10|6]5] etc. ... with the Elements dictating the width of the Columns and keeping the same size.

Below shows a more compacted system spaced according to width of Elements.

2. NUMBER SPACING CLOSEDGRID NUMBER SYSTEM

|106 |96 |
| 120112[7___|9 |48]
| IS5 12— |
| | [ 111 | |
196110 | __|__| |
| — 18[9 . [ —|..]|
|13 | 13_18] |
| 7121 | |
| 15— 1| |
| |20 I
| |10__|58 |
|48 | |

This is probably the Best Possible way to show Solutions. (I say ‘probably’ since it depends how you wish to use and display the solutions).

A6.15. QUANTITY OF HORIZONTAL & VERTICAL LINES FOR EACH ORDER

In the Above Example the Distorted Pattern showed 7 horizontal & 6 vertical Lines totaling 13, three more than the Order. This is also true for
any Order, so all Order 22 Solutions have a total 25 Lines, providing the following adjustments are made: Lines = Order + 3

1. The right and bottom border Lines are included. Otherwise Lines = Order + 1
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2. Add one Line for any and every Slide.
3. Add two Lines for any and every Crossover. NB. A Crossover will always occur whenever an Element 0 occurs.

A6.16. SIDES FORMULA

Rectangles may be usefully classed according to the numbers of Elements bordering each side as shown below.

The formula involved is preceded by S thus $2223 is a rectangle with 2,2,2 and 3 Elements.

Whether the numbers are taken clockwise or not depends on the rectangle concerned, but that combination which produces the lowest
possible number is the one used- e.g. $3222, S2322 and S2232 are shown as S2223. $2253 as S$2235. S3232 as S2323. 2433 as S2334 - note this
is not the same as $S2343. S3453 as S3345 and so on. See @E1.

SIDES INDEX 1 2 3 4 5 THIS EXAMPLE HAS 362 & 5
/ ) s < 1 ELEMENTS. BUT"3625" IS
: : NOT THE INDEX. THE
a 5 —% §¥\! ; CORRECT INDEX IS S2536
NOTE THAT 2356 & 2365 ARE
S2223 1 2 3 45 6 POSSIBLE SIDES, BUT
THIS IS THE SIMPLEST ARE NOT THIS ONE.

COMBINATION POSSIBLE.

A6.17. MINIMUM ORDERS FOR EACH SIDES FORMULA

Obviously the larger the Order, the larger the range of Side Indices possible. But low Orders such as 7 to 10 have a restricted range. If we
look at [9] 15 x 11 (above) which has sides S2323 we can produce solutions of S2424, $2525, S2626 simply by adding Triads repeatedly to one
(or either) end. This raises the Order by three each time -

1. 82323 Order 9, S2424 Order 12, S2525 Order 15, $2626 Order 18, S2727 Order 21, S2828 for Order 24... and these represent the smallest
Orders possible for these Sides, all of them VALID.

2. For S2223 there is an Invalid Solution [7] 8 x 7 but the smallest Valid Solution is [9] 69 x 61. For S2224 there is an Invalid Solution [9] 6 x
5 but the smallest Valid Solution is [10] and adding Triads to this we get INVALID SERIES S2223 Order 7, $2224 Order 9, S2225 Order 12, $2226
Order 15, S2227 Order 18 ...
but VALID SERIES S$2223 Order 9, $2224 Order 12, $2225 Order 15, $2226 Order 18, $2227 Order 21 ...
Exploiting the idea of adding Triad repeatedly we can easily work out the series -

2A. S2223 Order 7 (INVALID), S2324 Order 10 (VALID), S2425 Order 13, $2526 Order 16, S2627 and so on (after 7 all are Valid)...

3. 52233 Order 9 (VALID), S2334 Order 12. S2435 Order 15, S2536 Order 18, S2637 Order 21 and so on...
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4. INVALID SERIES - S2333 Order 9, S2334 Order 12, S2435 Order 15, $2536 Order 18, S2637 Order 21, S2738 Order 24 ... Following table
needs serious checking! y means verified. Where Two numbers, first is for Invalid

Side 3 4 5 6 7 8 Side |3 4 5 6 7 8
222 7y9y  |9y10y  |[11? 14i |15 18 253 14 15 17 18y 20 22
223 oy 11y 13y 15y |17y |19y | 254 16 17 19?7 |20? 22 24
224 11 13y 15y 17y |19y |21 255 18 19 21 23 25 27
225 13 15 17 19 21 23 256 |20 21?7 |23 25 27 29
226 15 17 19 21 23 25 257 |22 23 25 27 29 31
227 17 19 21 23 25 27 262 14 15 17 18 20 22
232 sygy |10 12 14 16 18 263 16 17 19 207 21i 222 |24
233 11 12 14 16 18 20 264 18 19 21

234 13 14 16 18 20 22 265 |20 217 |23 25 27 29
235 15 16 18 20 22 24 266 |22 237 |25 27 29 31
236 17 18 20 22 24 26 267 |24 257 |27 29 31 33
237 19 20 22 24 26 28 272 16

242 10 12 13 15 17 19 273 18 24
243 12 14 15 17 19 21 274 |20

244 14 16 17 19 21 23 275 |22

245 16 18 19 21 23 25 276 |24

246 18 20 217 23 25 27 277 |26

247 20 22 237 25 27 29

252 12 13 15 17 180K |20

Side 3 4 5 6 7 8

333 120K |14 16 18 20 22

334 14 16 18 20 22 24

335 16 18 20 22 24 26

336 18 20 22 24 26 28

343 14 16 172 207|227 |24

344 16 18 19

345 18 20 21

346 20 227 237

353 16 17 19 217
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354 18 19 217

355 20 21 23

363 18 20 227 24 26 28
364 20 22 247 26 28 30
444 18 20 22

A6.18. KINKS AND PLUS ELEMENTS
In many solutions it is possible to divide them into two sectors with just three lines. The internal line which may face left or right (or top or

down) give rise to a Kink. Kinks may occur several times in a solution, just once or not at all.
Any Kink will either contain an Element as in below 2 or it won’t. Where it exists it is termed a PLUS Element - particularly as part of a

symmetric pattern.

A KINK I
PLUS
ELEMENT

A7. GROUPING OF SQUARED-RECTANGLES

To show some of the definitions this solution below left is a Rectangle Order 9 with 9 separate values.
It is VALID that is, without zero Elements or adjacent Elements.
Its REDUCED DIMENSIONS are 69 x 61 the same as the Full Dimensions.
It is PERFECT with no duplication of any Elements.
Full size happens to be 69x 61 and the REDUCTION INDEX 1.
This example is SIMPLE as it contains no smaller rectangles.
It is an xy solution - can be calculated with a minimum of two UNKNOWNS.
It is CORNEX with largest Element 36 in corner.
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It is not SYMMETRIC .
It has no CROSSOVER points.
The SEMI-PERIMETER is 130 or 69 + 61.

1 1 |4 B )
2 1 0 4
1 1 1|1 11
[3] DUD [512x2ZERO[41 2 2 DUD | 3 ;
23 [7] 8 x 7 NONZERO
36 [9] 69 x 61 PERFECT p
: SYMMETRY 1 6 5
2 ie ASYMMETRIC 13
- 917 | 28 5 5
16 VARIOUS TYPES OF 4
RFCTANCGI EQ 01 1C v 11 CVAMCTDV 9

The following definitions appear complicated but are readily explained by actual examples.
Most of the items also apply to Squared-squares, but see that section for a full description of Squared-square types.

A7.1. SIMPLE OR COMPOUND

All Squared-Rectangles which contain one or more smaller rectangles within it, however large or small they are, are termed Compound.

So any rectangle with a single Element on one side is always Compound, and this means any Simple rectangle must have at least two
Elements bordering each side.

If an Element 132 can be added to the solution above the result is Compound.
(A7.1)

MEANING OF PSEUDOSIVIPLE I HE RUUGHL Y DKAVVN DIAGKAIVI AL LEFI
A B APPEARS SIMPLE (CONTAINING NO SMALLER
NOTE RECTANGLE) BUT WHEN CALCULATED AT

1 1 THE RIGHT AND DRAWING ADJUSTED IS IN FACT
C D SIMPLE. THE 2ND DRAWING SHOULD BE
1 1 RECTANGLE REGARDED AS STILL HAVING 5 NOT 4

ABCD. ELEMENTS, THE 5TH ONE BEING ZERO AND
NOT REGARDED AS HAVING DISAPPEARED.
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A7.2. PSEUDO-SIMPLE
These are solutions which appear Simple when drawn from a rough diagram but in practice turn out to be Compound. The resultant
rectangles are either Zero or Non-zero. See Above.

A7.3. DUDS
These are the least desirable rectangles of all and except for theoretical purposes are really beyond the scope of this book. An example is
a box of 4 ones. They are all Compound.

A7.4. REPEATERS
These are otherwise normal rectangles but at least one corner has 2 or more repeated adjacent Elements which makes them Compound.

A7.5. SINGLE ENDED SOLUTIONS TERMED SINGLENDS
These look normal rectangles but have one or two Elements completely bordering the end(s) which makes them Compound.
Unacceptable as proper solutions, they are useful in studying theory.

A7.6. COMPLEX
Where a rectangle contains at least one normal Squared-Rectangle within it, it is termed Complex.
They are Compound (but not Pseudo-simple).

A7.7. VALID OR INVALID

All solutions are one or the other. Any rectangles containing a zero Element are termed Invalid. Also all solutions with Elements of the
same size which are exactly adjacent are also regarded as Invalid.

Although some solutions seem of little interest, they need to be considered in the general theory. See A3.4.

ILLUSTRATING A REPEATER--------------- A SINGLEND-------------------- AND A COMPLEX SOLUTION

| | Various Elements

Single
RECTANGLE
RECTANGLE Elemen RECTANGLE

A7.8. PERFECT OR IMPERFECT

All solutions are one or the other. A solution is called PERFECT if every Element differs in size.

Otherwise the rectangle is called IMPERFECT. In the case of Imperfect the duplication may vary from one to many Elements. It follows that
all Invalid solutions are also Imperfect. Compound solutions may be Perfect or Imperfect.

Most of this book is concerned with this best group.
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A7.9. ZERO AND NON-ZERO

All solutions containing at least one zero Element are termed ZERO. Other Invalid solutions which would have adjacent Elements if the
solution was drawn to scale but not containing zero Elements are termed NON-ZERO.

These solutions are both Invalid and Pseudo-simple.

A7.10. SYMMETRY 1,2,3 & 4

All solutions are one of these. A rectangle has SYMMETRY when half the rectangle has the same pattern as the other half. The two halves
fit together, but if the Order is an odd number like 13 an unduplicated extra central Element is present.

Where the Order is an even number all Elements are duplicated. Note the difference in SYMMETRY 2 and SYMMETRY 3 below. SYMMETRY
3 is more common and has diagonal symmetry. Symmetry 4 only applies to squared-squares.

All solutions not Symmetry 2 3 or 4 are Asymmetrical and are in effect Symmetry 1. All symmetries include rectangles which are Invalid
and Compound, but especially Symmetry 3. Of course Symmetry 2-4 solutions are always

SYMMETRY 1 SYMMETRY 2 SYMMETRY 3 SYMMETRY 4

PATTERN IRREGULAR \N\_~ }L :r ONLY IN SQUARES
DIAGONAL & STRAIGHT SYMMETRY
Imperfect.
A8. RECTANGLES LEAGUE STATUS
A8.1. LEAGUE

Some Squared-Rectangles are clearly more interesting and satisfactory than others.
The types may be graded in status as follows within three separated groups:-

(A8.1)

Lower the number the higher the status | Status diagram

of the rectangle

1. Perfect 1. Complex Perfect 1. Square symmetry 1
2. Imperfect 2. Complex Imperfect 2. Square symmetry 2
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3. Non-zero 3. Complex Non-zero 3 Square symmetry 4
4. Zero 4. Complex Zero 4. Symmetry 1

5. Singlend 5. Symmetry 2

6. Repeater

7. Duds

A8.2. ALGEBRAIC NOTATION

Not yet settled -

Centex j Sidex k Cornex |

Full dimensions f**x** Reduced dimensions

Semi-perimeter SP

Higher dimension m Lower dimension n (m x n)

Reduction Index r**

Elongation e1 (square) e2 (Two by One Rectangle) e3 (etc.)
Single a Duplicated b ¢ d etc. (following reduced dimensions
p Mid-plus m Mid a b Reciprocal Pairs t “Twins”

Crossover ¢

Unknowns (x,y,z,a,b...)u2 u3 ud ... or xy xyz etc.

Sides S$2223 S$2223-3 followed by quantity of internal Elements
Smith Diagram- Ordinary, Box, y type

Poles, Terminals, Potential, Complexity Rotor Stators

A9. NUMBERS OF SOLUTIONS EXISTING TO ORDER 18 AND BEYOND

A9.1.ORDERS 1234 &5
The only solutions are dud or Invalid types of little interest. These are shown in passing.
All solutions are dud except for one Invalid [5] 2x2 with sides 2222.
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D 1|1 1| 1 1
SOLUTIONS ORDERS 1 TO 5.

A9.2. ORDERS 67 & 8
Apart from Duds not shown there are only 3 which are [7] 8 x 7 non-zero [8] 3 x 2 zero and [8] 8 x 7 zero. None are Valid

L] ~—~ " " =~ me———— LY~ ~7/ V= i AN L~ ~—~ " m——————

4 4 1 1 4
1 4
101 5 ol
3 3 < 1 3
2 1|1 1 3 5
3 4 5 4 . 18 15 36 33
- s 12 7 o[22
2 1 a 1|2 5 1 6 14 4 1 g 25 / 28
1 4 10 g 1 16

8X6 ZERO [9] 15X11 SYM 1 [9] 33X32 PERFECT [9] 69X61

T IS NECESSARY TO MAINTAIN THE ORIGINAL PATTERNS! THIS IS WHY ADJACENT
NES & FOURS ARE SHOWN AS IF THEY ARE DIFFERENT IN SIZE.)

A9.3. ORDER 9

This is the smallest Order where Perfect and Imperfect rectangles exist. Ignoring Duds there are 4 solutions:
[9] 6 x § Zero [9] 15 x 11 Imperfect symmetry 2 [9] 33 x 32 Perfect and [9] 69 x 61 Perfect. See Above 4-7. 3 Valid

A9.4. ORDER 10
There are 5 zero or non-zero solutions which are [10] 6 x 5, 8 x 6, 10 x 9, 11 x 8 and 30 x 26 all are Invalid.
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There are no Imperfect solutions.
There are 6 Perfect solutions. [10] 57x 55, 65 x 47, 105 x 104, 111 x 98, 115 x 94 and 130 x 79 all Shown Below.

6 Valid.
THE SIX PERFECT ORDER 10 RECTANGLES
17
21 25 5 |23 45
11 3 5 26
8 - |13 22 24 16[12] 7
25 17 [ £ 19 A4
15 33
28
[10] 75 x35 R2 [10] 65x47 R2
55 [10] 105x104 R1
57 o4 60 a1
3 ] 45 | 44 2
16 °
152 44 o 1511 39 11112
41 11 4 34 35 | 38
B 19| 23 23

[10] 111x98 R1

[10] 115x94 R1

[10] 130x79 R1

A9.5. ORDER 11 UPWARDS

There are 11 Zero or Non-zero solutions, but oddly no Imperfect solutions.
There are 22 Perfect solutions, all catalogued by me.

Total Valid, 22

ORDER 12
The amount of solutions accelerates and the proportion of low grade rectangles reduces.
There are 18 Invalid solutions (Non-zero and Zero). 9 Imperfect solutions and 67 Perfect solutions. | have worked out all.
Total Valid, 76

ORDER 13

51 Invalid solutions, 34 Imperfect and 213 Perfect solutions.

| have catalogued all these.
ORDER 14

Found on an IBM 650 Computer were 104 Imperfect and 744 Perfect solutions.
ORDER 15

Found on an IBM 650 Computer were 283 Imperfect and 2,609 Perfect solutions.
ORDER 16 TO 25 PERFECT SOLUTIONS

Found and shown on the Internet to year 2011.

Total Valid, 247

Total Valid, 848

Total Valid, 2,892
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Order 16, 957 Imperfect 9,016 Perfect solutions Total Valid, 9,973

Order 17, 3,033 Imperfect 31,426 Perfect solutions Total Valid, 35,259
Order 18, 9,494 Imperfect 110,381 Perfect solutions Total Valid, 119,875
Order 19, 30,301 Imperfect 390,223 Perfect solutions

Order 20, 98,889 Imperfect 1,383,905  Perfect solutions

Order 21, 4,931,307 Perfect Solutions

Order 22, 17,633,469 Perfect Solutions

Order 23, 63,301,415 Perfect Solutions

Order 24, 228,130,900 Perfect Solutions

Order 25, 825,000,000 Perfect (Approx.)

These figures suggest there may be roughly three times more solutions for each increase in Order.

In studying the methods of creating rectangles it is obvious that each higher Order has far more solutions than the one before.
(Refer to Section on Adding and Diminishing)

Amazingly for any Order over 6, there are far more solutions for that Order than the total for all lower Orders!

A9.6 ORDERS 20 TO 47 - QUANTITY ACTUALS & ESTIMATES

Using advanced computers, the total quantities of Perfect & Imperfect Solutions has been calculated to Order 35!

A Formula has been devised connecting these values has been found (which includes the square root of pi!) and estimated quantities have
been calculated to Order 47 (and more) as shown.

NB This formula is not absolute - it is an approximation.

Order  Quantity of all Valid Solutions (Perfect & Imperfect)

20 1,427,065

21 5,052,780 about 3.54 x Order 20
22 17,992,102

23 64,398,982

24 231,595,693 about 3.60 x Order 23

25 836,505,020

26 3,033,508.350

27 11,041,527,171

28 40,327,701,410

29 147,762,266,421

30 943,019,459,457 about 3.68 x Order 29
31 2,001,125,317,966
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32 7,393,729,651,680

33 27,385,057,313,051

34 101,662,597,313,051

35 378,223,383,714,871

36 1,410,010,107,776,020

37 9,266,646,375,738,230 about 3.73 x Order 36
38 19,707,860,022,106,100

39 73,874,904,808,387,400

40 277,375,734,235,367,000

41 1,043,082,820,594,150,000

42 3,928,395,734,235,367,400

43 14,815,874,077,269,400,000

44 55,953,430,375,235,800,000

45 211,586,091,106,156,000,000

46 801,094,614,153,181,000,000

47 3,036,643,000,848,710,000,000 about 3.79 x Order 46 Approx. 3000 MMM!

A9.7. SQUARED-SQUARES QUANTITY COMPARED TO SQUARED-SQUARES
As we might guess, there are much fewer Squared-Squares than Squared-Rectangles, and ignoring Order 1 and Invalid types there are no
occurrences to and including Order 12, or of Order 14.
But Squares exist for Order 13 and for all Orders from 15 upwards, in rapidly increasing number.
There is ignoring Invalid solutions, one for Order 13, 3 for Order 15, 5 for Order 16, 15 for Order 17, 19 for Order 19 and 58 for Order 20.
Not one of these 101 solutions however are Perfect as all have at least one Element with size duplication.
For some unclear reason the quantities are relatively more for Odd Orders than Even Orders.

A10. NEGATIVE OR ZERO ELEMENTS IN SOLUTIONS

A10.1. RANGE OF INTEGRAL VALUES IN SOLUTIONS

This Book is concerned with Elements which are positive integers and when solutions arise which include fractions, they are multiplied
up to be integers.
Odd internal negative Elements are easily converted into positive by adjustments of position.
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The full size of the Solution below is (30,20,25)(15,5)(30)(25,5)(20) which reduces to (6,4,5),(3,1),(6),(5,1),(4). But note that (-6,-4,-5)(-3,-1)(-6)(-5,-
1)(4) or even (0,0,0)(0,0),(0)(0,0),(0) would theoretically satisfy this pattern.

6 4 5

A10.2. ARECTANGLE WITH INTEGRAL SIDES MAY HAVE NON-INTEGRAL ELEMENTS
Another minor point in passing. Take [11] 98 x 86. If Elements are halved the odd ones would end in halves, but the dimensions would be
49 x 43.
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A11. MEANS OF RECORDING SOLUTIONS

A11.1. RECORDING SOLUTIONS

The solutions when shown in normal geometric form take up much space and time to construct where many of them are required for
study.

There are more compact ways of recording them without the need for patterns. In fact there are several ways each with advantages and
otherwise, and finding a system which is always useful needs much thought.

A11.2. FORMULA
A formula is used which is easy to apply, and from which the diagram can be readily drawn. Sets of horizontally adjacent Elements are
written from the top to bottom as Below:- There are a number of ways of showing this, and some are shown.

30 | 27 <" [30,27] CONTRUCTING THE FORMULA
< [31113] FROM THE HORIZONTAL ROWS

3[11 13 _ , FROM TOP TO BOTTOM.
25 Q ~ [ 518]
17 |2 < [[1212] [30,27][3.11.13][25,8][17,2][15]
N
15 [30 27+3 11 13+25 8+17 2+15]

30 27,311 13,25 8,17 2,15

The layout of the formula is affected when the solution is rotated or reflected thus [25,17,15] [2,13] [8,11] [3,13] [27] is the Above solution
upside-down. Arranged horizontally, the formula again bears little similarity to the others.
This is a possible drawback to the system, but by convention the horizontal formula with the largest corner at left top will be used.

This system was the means of recording Solutions proposed in the 1930’s when Brook and his friends worked on the subject of Squared-
Rectangles.

A11.3. ALTERNATE WAYS OF RECORDING ELEMENTS

There are several possibilities with merits and demerits. The Above solution can be coded in the following ways-
1. BY FORMULA

*30/27*3/111/13*25/ 8*17 | 2*15* or other variant as previously mentioned, is a good method but marred by not being unique unless rules
are applied.

2. SIZE ORDER FORMULA

23811131517 25 27 30 is useful for some purposes but useless for the construction of the solution.
3. BY ORDER THEN INNER ELEMENTS CLOCKWISE
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30 27 13 1517 25 and 3 11 2 8 where the inner Elements (after and) start at top left. Good for constructing rectangle.
Corner Elements might be indicated by dots following thus 30.27.13 15.17 25. and...
4. BY x y CALCULATION ORDER

211131517 8 3 25 27 30 Solutions can be constructed though not always satisfactorily in one go. If the solution has very small Elements
it may be very difficult to draw - or occasionally even impossible. The series is never fixed which is a pity, there being other choices of x and y
available.

A12. HORIZONTAL-VERTICAL RATIOS FOR END PATTERNS

A12.1. HORIZONTAL-VERTICAL RATIO FOR SOME END PATTERNS

Look at the End patterns below which are termed Diad, Pentad, Octad, Undecad in this book.
A vertical line has been drawn to bisect the ‘kink’ between x and y. Is there any relationship between the depth of AB and the distance to AB?
Yes! The horizontal is always one-half of the vertical in the case of below 1 (e.g. with 11 and 7 the line is 9 which is half of 11 + 7 or 18).
In the Pentad the line is found to be three-eighths of the Vertical AB whatever values are given to x & y. The Reader can check this from the
algebra if required.
In the Octad, the ratio is 11/30 and 11-Add 41/112 of the Vertical AB.

A A A A A
11 X+2y
X L
y7 | Xty
2X+Y B
I~ B B
PN A B 2\ B __ AB*05
1/20f AB 5, 5f S > AB*1.0
3/8 of AB 11/30 of AB  41/112 of AB AB*1.5
andsoon...

This series can be continued for 14 17 20 Elements... Note 1 + 2 =3 and 3 + 8 =11 and 11 + 30 = 41 so the next value number must be 41 +
112 = 153! The second values are double 1, 4, 15, 56 each being 4 times the last value less the previous one. Now 56 x 4 - 15 is 209 so our next
Ratio is 153/209!

Above 5 shows patterns called Double and Triple. Algebra will show that the Ratios rise by a half each time! So a vertical line driven
through the middle of the small Element E is the same distance from A as the length of AB! The above relationship is particularly useful in
Section D later.
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A12.2. HORIZ-VERT RATIOS APPLY TO ANY SYMMETRIC END

A quick check will reveal that in any End which is Asymmetric that this ratio is not fixed and so does not apply. However it does for

absolutely any Symmetric Pattern.

W1
ad

Bz

2/2(1)
3/2

11/8

15/8

A 41202

F

o

7122
18/22 as shown

| 29/22

40/22

3/8 Pentad

7/8 as showr

34/38
53/38

72/38

C

11/30as shown
26/30

41/30
56/30

15/38 as show

2/5 Trjad

9/5 as shown
16/5

m

23/5

O

3/8 Pentad+
7/8 as shown

11/8

15/8
H

The above shows some series of Ratios - the pattern shown relating to the Ratio “as shown”. The other Ratios apply when Triads are

added. For the Triad pattern E the Ratios are the same as in Diad pattern A. The same is true with patterns B and H where the series of patterns
is different but the Ratios remain unchanged.

12
19
27

RZ 7
3[1 8

4 | 5
14 6

9

A
(9/11)

/P

7122 18/22 29[22 40/22 . ..

Another pattern with Triads at right is shown above. Here the Ratios rise by a half or 11/22 each time a Triad is added. These are verified
by the dummy Elements shown. It will observed that some Ratios cancel down to 9/11 20/11 (31/11 42/11 ths etc.). It is evident that whatever is

added to the pattern at right hand side, the lesser dimension must always be divisible by 11 (in the Above case 33 is divisible by 5). We shall
term this number 11 as the Pattern Factor or PPF and the next section will deal with these.
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A12.3. PATTERN FACTORS

A number of symmetric patterns have already been shown the simplest being the Dad and Triad which both have a Pattern Factor of 1. In
a Pentad however the PPF is 4. In other words the distance straddling the Pentad is always a multiple of 4 (where all Integers are integers of
course).

A Pentad is a Dad with one Claw added. An Octal is a Diad with two Claws added. The Pattern factor now becomes 15. For 11-Add the PF
is 56 and for 14-Add the PF is 209.
This series 1 4 15 56 209 is easily constructed by multiplying each number in term by 4 and deducting the one before. Thus 209 x 4 - 56 =

780 and 56 x 4 -15 = 209 and so on. The series remains true no matter how many Triads are subsequently added. In fact adding Triads make no
difference to the Pattern Factor.

14 15 56 -- is not the only series. We saw above a Pattern Factor of 11. Needs tidying up! ***

| <== Pattern Ratio
<== Pattern Ratio 11
<== Pattern Ratio 4 (Pentad

l
l

A13. CODING SYSTEM FOR SYMMETRIC PATTERNS

A13.1. SYSTEM OF CODING SYMMETRIC LINKS

| have spent ages attempting to evolve a perfect Coding System that will embrace all Symmetric patterns, which is easy to apply without
being too cumbersome and lengthy. Finally a good System has been found.

Below a Sample pattern is shown, which can be varied in infinite ways. Note that other patterns will look extremely different from this. See 2nd
diagram.

A LEFT Forms a Regular Pattern
B TOP (BOTTOM is same reversed)

A 1= //I—/ .| C RIGHT
D) C INTERNAL Is a pattern, with or without --

PLUS A single Element, often omitted
A

D

E

F BLOCK - A variable Irregular pattern /_\
G PLUS A single Element, often omitted

B CODE - A;531

B

(VIR ]

™S

N

CODE - C 000

1. Each pattern must contain at least Sectors A - some sort of REGULAR Pattern, and F - some IRREGULAR Pattern.
2. The Pattern may or may not contain any or all of the other Sectors BC D E and G.
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3. Ignoring BLOCK F there are four Sectors - LEFT TOP RIGHT and INTERNAL, but 4. The BOTTOM is simply regarded as a reversed repeat of
the TOP.

5. Where PLUS E and PLUS G exist, they occur each side of D, INTERNAL, but are coded separately.

6. There are often several variations with the same Code which not unique, unless separated by further explanation and coding.

7. The Pattern for A is denoted by two code letters like -Y or BH - see later for list.

8. B is easily recorded by the Number of Elements at the Top, 3 in above. However other patterns may share the same code.

9. C is easily recorded by the Number of Elements at the Right, 1 in above. However other patterns can share the same code. 10. B C and D are
each coded as 0 if these sectors do not exist.

11 The INTERNAL area D may not exist at all, or exist with Elements at E, G, E and G, or without E and G. Where D does not exist but a single
PLUS does then this PLUS must be regarded as E only with G absent.

A13.2. COMPILING THE CODE
The procedure is as follows:-
1. The Code letters for the Regular pattern at A is shown first. The Diad has been labelled A.
2. This is followed by a space, comma, hyphen or semicolon according to the presence of E and / or G -
(SPACE) No Element at either E or G. , (COMMA) Element at G only. ‘ (HYPHEN) Element at E only. ; (SEMICOLON) Elements at both E and G as
Above 1. Where there is no Internal area D but there is a single PLUS then ‘ (HYPHEN) is used. 3. This is followed by three numbers which are
simply the quantity of Elements in D B and C respectively.
Above there are 5in D 3 in B at top and 1 at C. Thus the codes for Above is A-;531 and C-000.

A13.3. ADVANTAGE OF CODED PATTERNS
Codes not only form a useful short reference to complicated patterns, but they can also be processed in various ways.
In particular, new links can be readily found by knowing which amounts to add or subtract to numbers in the Code.
They are useful in determining which links are still to be found, and a check as to when the list may be finally complete!

A13.4. EXPANDING THE CODING ON THE LEFT HAND SIDE

The pattern at A - the left hand side - mentioned earlier, can be an infinite number of patterns and so a Coding system for this first part
has also been devised. This is actually more straightforward than it at first looks!
First -
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As left but

a further
three Elements

B — added at points
B,A&C

and soon...

—

C
Code A Code B CodeC (codep CodeE...
2 Elements 5 Elements 8 Elements 11 Elements 14 Elements

Absolutely any Symmetric Pattern will comprise a bit as Code A, but some will have 5 Elements as Code B or one of the other patterns. This A,
B & so on, forms the first part of the Code.

Next, it may be that there is also a pattern to the right of this containing 2, 3, 5, 6, 8, 9. . or more Elements. See below.

me B

% CDEF
r A
N

[anY
A

o

/ 4

tt ad -
BB o | r
7 E|F

For example there may be three more Elements shown as A & B Above. If C also applies then there are 6 more Elements. If D also applies
there are 9 more Elements and so on. In this part we simply show the number of additional Elements. So if “Some Pattern” is Code A and
Elements A & B in the last appear (but not C) then our Code becomes A-3. If A to F all appear with Code B at left then the Code is B-15. And so
on.

Now with some other patterns at the Left the single Element A may not be present, and so additional Elements may be 2, 5, 8,11, 14 . ..
But if A does exist as multiples of 3. (3, 6, 9, 12 ...) may do.

Next to the pattern already considered there may or may not be, more Elements added at top and bottom and possibly on the left hand
side. These will be coded B for 2 Elements, C for 3, E for 5, F for 6, H for 8, | for 9, K for 11, L for 12 etc. according to the position in the
alphabet.
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éz Number 1&

6 of Elements 5 This pattern

3 to various 2 differs from last
stages are —in that there
shown K is no Element

i _ here
CoEC | various Cote B

'|: stages are E

shown H L
| L <====> | K Code B2C

In above 3, note that our original pattern - a Pentad & code B becomes internal after 2 Elements at right are added, followed by three & top
at left, the third letter in the alphabet being C.
Lastly some Symmetric patterns are more complicated as they contain one of the following on the right hand side -

CODE X

CODE Y

CODE zZ

Coding A-Z

In above 4 note that the start pattern, a Diad, is this time external. Note too that where x has been shown it is possible to have the same
patterns with a further Element added here. If so add “1” after the previous letter, i.e. “A - Z” becomes “A -1Z” and “A - Y” would become “A -
1Y” and so on!

A14.1. VERTICAL & HORIZONTAL BARS

Within any Rectangle or Square are a collection of Lines (horizontal or vertical) which border a number of Elements on both sides. The Lines
will be referred to as Bars when the bordering Elements are considered.
The number of Elements is always three or more.

1. Only Adjacent solutions can have two Elements.

2. Where there are three Elements 1 on one side, two on the other. Clearly the size of all must be different.

3. Four Elements - Either all Elements will be different, or there will be two pairs or duplicates. E.G.
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123_|15] [15[36__|

|18|20_ | |36__|15]
4. Five Elements - a. 1 Element bordering 4. Usually all Elements will be different. Occasionally there is a duplicate pair.

b. Two Elements bordering three (or vice versa). There may or may not be a duplicated pair. More about this is dealt with in Section S.
5. Six Elements - a. 1 Element bordering 5 or b. 2 Elements bordering 4 or ¢ 3 Elements bordering 3.
6. Seven Elements & Larger.

A14.2. OCCURRENCE OF DUPLICATE ELEMENTS WITHIN BARS.

Many Bars of 5 or more Elements are found with a pair of Duplicate Elements. Why so many? Others have all different Elements. Are there any
rules to determine which constructions have Duplicates? Well, the Trailing System dealt with at length in Section S may help.

Section S12 shows that two Pentads put back-to-back result in a duplicate pair of Elements. Ditto with two Octads or two Undecads etc.
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B. SMITH DIAGRAM BASICS

B. INTRODUCTION - VARIOUS REPRESENTATIONS OF SQUARED-RECTANGLES

Apart from the normal illustrations of Squared-Rectangles (whether shown as exact squares or distorted rectangles) and the listing of
Elements according to various formulas, there are other ways of representing solutions - some more useful and general than others -

1. NETWORKS (Like Smith Diagrams without positions for poles) B7

In all types of Smith Diagrams noted below there are always distinct patterns for the Vertical and Horizontal formats BS...
2. SMITH DIAGRAMS (Unfixed format). The basic type used B1.1 efc...

3. SMITH DIAGRAMS (Fixed formats) - Various:-
a. SMITH DIAGRAMS TYPE Y B13.3 and TYPE X B13 etc.
b. SMITH DIAGRAMS BOX TYPE B13.5
c. SMITH DIAGRAMS O TYPE B13.6
d. SMITH DIAGRAMS G TYPE (GRID TYPE) B13.8
e. SMITH DIAGRAMS TRIANGLE, SQUARE, PENTAGON & HEXAGON TYPE with or without additional Stator Wires.

4. C-NETS B16 Essentially a restricted form of Smith Diagram arranged as a Triangle.
5. P-NETS B16 As above but a wire (element) removed.

6. MATRIX (plural MATRICES) B16.1. A series of lines with numbers.

7. MOSS DIAGRAMS B14. Elements regarded as points (not lines as in SD’s) joined by lines in a square format.

B1. SMITH DIAGRAMS - TERMS USED
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B1.1. SMITH DIAGRAM (‘DIAGRAM’ IN SHORT)
This is a means of representing geometrically a Squared-Rectangle by a diagram which closely resembles a planar electrical network with
two poles and connecting wires. Proper explanation is given later.

B1.2. POLES
The two poles in a Smith Diagram are the two points from which the current flows from, being the positive pole, and current flows to, the
negative pole. The number of Poles is always TWO.

B.1.3. COMPLEXITY

This is fully explained later, but is the full current flowing from the positive pole, and flowing to the negative pole. The COMPLEXITY is
equivalent to the full horizontal value of the Squared-Rectangle.

There happens to be a fixed Complexity for every electrical circuit irrespective of which poles are chosen.

B1.4. NETWORK
This relates to the entire pattern of wires in the Smith Diagram.

B1.5. CIRCUIT OR INDIVIDUAL CIRCUIT
This relates to a single piece of the entire network in the Diagram. In this book “Circuit” means an individual circuit.

B1.6. ROTORS and STATORS
This is fully explained later. Sometimes part of a Smith Diagram can be reversed. This is called the ROTOR. The remaining part which
cannot be reversed is called the STATOR. In many rectangles the whole rectangle can be regarded as a Stator without any Rotor.

B1.7. “Y” SMITH DIAGRAMS

This is fully explained later. Many rectangles calculated with two unknowns (x, y in algebra) can be represented by a special type of Smith
Diagram with a centre point and three arms in the shape of a “Y” with lines connecting them.

All Squared-Rectangles may be converted into what are termed “SMITH DIAGRAMS”. In fact a Smith diagram is a representation in a
different form of a Squared-Rectangle.
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A o POSITIVE POLE

PARTS OF A SMITH DIAGRAM
THE POLES MUST BE EXTERNAL

B
TERMINAL
| EACH POLE MUST HAVE AT
, g LEAST TWO WIRES ADJOINING IT
E INDIVIDUAL EACH TERMINAL HAS AT LEAST THREE
CIRCUIT o WIRES ADJOINING IT

14F

DIRECTION OF
CURRENT

THERE MUST BE NO CROSSING
WIRES WHICH DO NOT JOIN

¢ \{/ FORBIDDEN!
NEGATIVE POLE

B1.8. PARTS OF A SMITH DIAGRAM

The features are best illustrated. Above [9] 33x32 horizontal is shown and each Element replaced by a wire of same value.

It resembles a river starting at one place, the POSITIVE POLE, and flowing via devious routes to another, the NEGATIVE POLE. Thus the
POTENTIAL at both Poles is the same, namely 33. Note that the length of each wire is irrelevant and has no effect on the structure which
means that the diagram can be pressed and pushed into many shapes in infinitely different ways. Hence this diagram is termed UNFIXED. See
later for various attempts to obtain FIXED Diagrams.

B2. SIMILARITY TO PLANAR ELECTRIC NETWORKS

Basically a Squared- rectangle is essentially the same as an Electrical Network consisting of wires joining together and arranged in such a
manner as to be planar, i.e. no wires crossing. In real electrical network the network is not bound to be planar (flat) nor the currents bound to
be positive integers or zero.
Two features that do not apply to Squared-Rectangles:-

In a correctly drawn Rectangle all Elements are naturally always positive, but in Diagrams the flow of current along each wire (which
effectively replaces each square), the flow of current must be shown by means of arrows to distinguish positive and negative flows. A flow of 6
in one direction is the same as a flow of -6 in the other.

B3. HISTORY OF SMITH DIAGRAMS
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Smith Diagrams were originally devised by Mr. C. A. B. Smith, a student of Trinity College, Cambridge in 1936 when he and three friends
made an extensive study of Squared-Rectangles. Smith objected to the name, but this term was adopted. Squared-Rectangles can come in
various forms and adaptations, and there are other possible diagrams.

B4. KIRCHOFF’S LAWS

Kirchoff in electrical theory stated that for a flow of current in an electrical circuit,
1. Except at a pole, the algebraic sum of the currents flowing to any terminal is zero, and
2. The algebraic sum of the currents in any individual circuit is zero .
To check these points look at terminals abcde and circuits FGH and J in the diagram where A. pole B.15-7-8=0
C.8+1-9=0D.poleE.18-4-14=0and circuits F.4+10=14G.15+7=18+4H.7+1=8J.1+9=10.

B5. VERTICAL AND HORIZONTAL DIAGRAMS

B5.1. VERTICAL AND HORIZONTAL DIAGRAMS

Any Squared-Rectangle can be turned upside-down and keep the same pattern. Obviously mirror images of both up and down versions do
not alter the pattern. There are 4 ways of displaying any Diagram, but by convention the largest corner is put at top left to prevent confusion.

In this book Squared- rectangles are drawn with the positive pole at the top and most arrows pointing downwards. It is possible to display
Squared-Rectangles so that all arrows point downwards rather than upwards or on the horizontal. Clearly all external wires point downwards

only.
J \

A HORIZONTAL

SMITH DIAGRAMS FOR [9] 3332 ~ SMITH DIAGRAM & A VERTICAL
(THE SECOND MAY BE REGARDED AS FOR {9} 32x33)

B5.2. THE TWO DISTINCT SMITH DIAGRAMS FOR ANY RECTANGLE
Any Rectangle can be drawn horizontally or vertically and a Squared-Rectangle drawn for each. There is no practical difference in the
rectangles but the two resulting Diagrams are very different, and seem to be unrelated to each other!
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See Above for an example for [9] 33 x 32. For each Rectangle there are two diagrams and thus the total possible Smith Diagrams for any
given Order is an even number. A horizontal Smith Diagram may well have more wires adjoining the poles than between, and the reverse true
for vertical Diagram. From given Smith Diagrams it is often impossible to guess whether it represents the horizontal or vertical SR but the 3rd
diagram above is clearly horizontal since the Rectangle is 5 Elements wide and 2 deep. The 4th diagram is clearly vertical since the Rectangle
is 2 Elements wide and 5 deep.

Also in these diagrams arrows show the direction of current where it is obvious, but it is not possible on quick inspection to insert arrows
for the remaining wires, and it is incorrect to assume that arrows must always point downwards.

B6. SMITH DIAGRAM SYMMETRY

B6.1. INTERNAL ELEMENTS VERSUS INTERNAL WIRES
Surprisingly the number of Internal Elements in a SR and internal wires in a Diagram are not the same! In a Diagram only the Elements at
extreme left and extreme right of a rectangle show externally. In Below 3 all wires with arrows are actually external in the solution. These are

either external in the diagram or radiating from either pole.
EXAMPLES OF SYMMETRY IN SMITH DIAGRAMS

S 0t

CLEAR SYMMETRY DISGUISED SYMMETRY

2 FOLD SYMMETRY OF
) > FOLD 3FOLD TWO TYPES
THESE GIVE SYMMETRICAL
SQUARED RECTANGLES
ALSO, UNLIKE THOSE ON
ON THE LEFT.

B6.2. SYMMETRIC SMITH DIAGRAMS VERSUS SYMMETRIC RECTANGLES

In rectangles symmetry is easily seen. In Squared-Rectangles this is complicated by certain features.

Look at the Rectangle for [9] 33 x 32 (horizontal) above - it is symmetric! But the rectangle is not!

It is found that the Diagram for a symmetric rectangle is always symmetric too, but the diagram may sometimes look otherwise until
suitably arranged. As usual, drawings show this clearer than text.
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The reason why a Squared-Rectangle can sometimes be asymmetric yet have a symmetric Smith Diagram is down to the choice of poles.
The diagrams to the left have no symmetry between the poles chosen. On the right symmetry between the poles exists. This is why the
rectangle is symmetric also.

A further complication is that Diagrams can have 2 fold, 3 fold, 4 fold, 5 fold... to any number!

Hence symmetry in Diagrams has a different meaning. It is not evident from inspection of any rectangle whether or not symmetry exists in
the Diagrams even if the Diagram is drawn, it can easily be missed in cases where it exists.

B6.3. MORE ON SYMMETRIC DIAGRAMS GIVING ASYMMETRIC RECTANGLES

As already said, it is the choice of Poles which dictates this.
In the case of any Symmetric Diagram having an ODD number of outer Element wires it is clear that the bottom Pole cannot fall exactly half
way along. Look at AF in below 4 which has a hexagonal pattern with six outer wires. Here any Rectangle must always be Symmetric since the
left half is mirrored by the right half. But notice AE in below 4 may well give an Asymmetric Solution despite the number of outer wires being
EVEN.

Although some Solutions may be dud, Invalid or Symmetric occasionally, the majority of pole choices for 5 7 9 11... Wires will give
Asymmetric Solutions. Note that in Below 1 AG will give a Solution but it is a repeat of AB so may be ignored. But with 5 wires one pattern
from Pole AB is possible, two (AB AC) for 7 wires, three (AB AC AD ) for 9 wires, and so on. .

e

Poles AB AB or AC AB or ACor AD AE but not AF

6.4. RELATING PAIRS AND SINGLE WIRES IN SYMMETRIC DIAGRAMS
In the first pattern below note it divides into corresponding pairs aa b ¢ ¢ d d. Likewise the second has pairs hh ii jj Il and mm. But the
remaining starred wires are Single ones.
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*

B6.5. SOLUTIONS FOR SYMMETRIC DIAGRAMS
Shown Below are some patterns which are Symmetric as far as the Smith Diagram is concerned, yet give Asymmetric Rectangles. The number

of external Elements in the Diagram (not the Rectangle) is 5 in each case. The Poles chosen are at the top and SW corner. Not all are Valid
solutions. NOT YET FINISHED.

@@ R
g/w NS NLAY

B7. NETWORK PATTERNS

B7.1. NETWORK PATTERNS
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This is simply a Smith Diagram pattern with no poles positions shown, from which a number of choices of poles combinations can be
made. It is possible for several rectangles to share a Network pattern, but each having differing pair of poles. Each group of rectangles has the
same Complexity.

B7.2. COMPLEXITIES

With every electrical circuit there is associated a number, called the Complexity of the circuit. The COMPLEXITY is the full current flowing
from the positive pole and also the full current flowing to the negative pole.

The word “full” refers to that current before any reduction has been made, i.e. before each currents is divided by the Reduction Index.
Thus in [9] 15 x 11 of full size 75 x 55 the Complexities are 75 horizontal and 55 vertical.

Often a particular amount may have several distinct Complexities, 593 being a case in Order 13, so they are lettered 593A, 593B, 593C and
SO on.

B7.3. POLES ONE WIRE APART IN A NETWORK
In any circuit or Complexity any two outer terminals may be chosen as Poles.
The fixed Complexity rule is not broken when poles one wire apart are chosen.
However a Singlend solution results and so effectively a rectangle of the Order Below if the single end is axed.

B7.4. CHOOSING POLES 2 OR MORE WIRES APART IN A NETWORK
By doing this Singlend solutions are avoided. Where only 2 wires connect a pole, no other choices of this pole are available and for 222#

solutions only a single solution for the complexity exists. Other networks may provide many pole choices, e.g. the horizontal Diagram for [13]
593 x 480 where changes of poles also provide 593 x 472, 593 x 510, 593 x 473 and 593 x 465 if Singlends are ignored.

B8. AMOUNT OF SOLUTIONS FROM ONE COMPLEXITY_

B8.1. AMOUNT OF SOLUTIONS FROM EACH COMPLEXITY
(External Pole choices only - see B8.2 also)
There are Simple rules which apply to this -
1. Cases where 3 or more wires adjoining both poles, which means or 3 or more horizontal Elements at top and at bottom of rectangle: Add the
amount of Elements bordering the vertical sides of the rectangle - minimum 4, which equates to the amount of external wires in the Diagram.
Call the terminals abcd ... etc. how many choices of 2 or more apart can be made? For ABCD only AC and BD. For ABCDE AC AD (NB not
AE) BD BE and CE (five).
For ABCDEF AC AD AE BD BE BF CE CF and DF (nine)
For ABCDEFG AC AD AE AF BD BE BF BG CE CF CG DF DG e.g. (fourteen).
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The series runs 2, 5, 9, 14 ... with differences 3,4,5 ...

COMPLEXITY 593A COMPLEXITY 593A

[13] 593x480 [13] 593x472

POLES ATA & C
2

119 poLESATA & D

COMPLEXITY 593A

59 [13] 593x 510
171
POLES ATC & E

3

COMPLEXITY 593A
[13] 593x 473

POLES ATB & E

COMPLEXITY 5!

[13] 593x465

\4 QCZ POLES ATB & [

2. Cases with 3 or more wires at each pole. ABCD AC BD (two) ABCDE AC AD BD BE CE (five) ABCDEF AC AD AE BD BE BF CE CF DF (nine)
ABCDEFG AC AD AE AF BD DE DF BG CE CF CG DF DG EG (fourteen).

An example of a series of 5 is shown Above for Complexity 593A.

3. Two cases with 2 wires at each pole: 1 solution only.

4. Cases with 2 wires at one Pole only: one Pole fixed, other can vary. ABCD AC only (one) ABCDE AC AD (two)

ABCDEF AC AD AE (three), the series runs 1,2,3,4,5 ...

A Table can be constructed as follows:- but see B8.2 below.

Amount of vertical Elements (left + right) 0 fixed 1 fixed 2 fixed

4 ABCD
2
1
1
5 ABCDE
5

2
1
6 ABCDEF
9
3
1
7 ABCDEFG
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14
4
1
8 ABCDEFGH
20

5

1
9 ABCDEFGHI
27

6

1
10 ABCDEFGHIJ
35

7

1
11 ABCDEFGHIJK
35

7

10

B8.2 ADDITIONAL SOLUTIONS POSSIBLE FOR A GIVEN COMPLEXITY USING SWIVELLING
The following appears tricky but is actually a simple idea!

In the case of Complexity 593A above the choices of pairs of Poles were all external and in this case to have pairs which include an internal
terminal is impossible. But this is not always the case:

Turlne?(u _I(sidﬁ_—dowg it //|
ooks like this an
[9] 33 x 32 as [9] 66 x 64  [9] 6x 5as [9] 66 X 55 redrawing it better like this C

54



55

Look at the horizontal Smith Diagram for [9] 33 x 32 above. The full Dimensions for this are 66 x 64 and the full Elements are shown so the
Complexity is 66. Now notice that
1. There are only two Elements at the top of the Rectangle (36 & 33 shown as AD and AE) and
2. There are more than one Elements joining D with E. (Two here)

In Above 2 the pattern for the area bounded by B D E has been repeated unchanged except that lines AD and AE have been swiveled from top
to the bottom like a skipping rope! This gives a different Rectangle [9] 66 x 55 which reduces to

[9] 6 x 5. But pattern above 2 is not ideal since the largest Elements (33 & 33) appear at the bottom, whereas they would be better at the top in
accordance with the usual convention.

So instead of Swiveling AD & AE we Swivel the rest of the area instead leaving AD & AE in the same position as before we get Above 3
which is simply Above 2 up-side-down. Still not ideal this pattern can always be improved by ‘flattening’ the upper wires between DE and
pushing the rest of the pattern downwards as shown in above 4.

The important outcome of all this is that the Complexity in above 1 and above 4 is the same, 66 and 66!

So the choice of ANY two Poles in a network external or internal, providing that choice is actually possible, gives rise to a Rectangle with the
same Complexity.

So in above 1 we can select Poles A & B or Poles A & F (actually still [9] 33 x 32) or Poles A & C where C is initially internal!

Corresponding
E — Squared

\ - Rectangle
/ ] for the
some / Diagram at
pattern left.

DE must comprise more than one Element
but may be 2 or higher. Here FOUR are shown and

Solutions with Pole Choices A-B A-F A-G and A-H
are all possible with each having the SAME COMPLEXITY
Solutions with a Triad top, using an Internal Terminal as one of the Poles are impossible. But if XY in above 2 is bordered by 4 or more
Elements, 6 are shown, additional Solutions may be found involving a single Internal Pole choice. In above AF AG & AH are all possible
choices, each with the same Complexity.

B8.3. OTHER NETWORKS WITH INTERNAL POLE CHOICES
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Note that there

IS a space between
D&E,i.e. no
Element lines

appearing inbetween.

N

Whenever a Network is so arranged such that there is an unbroken area existing between D and E (see above), at least one Solution using
an “Internal” Pole is possible. For instance in above the pattern bounded by BDCE can be Swiveled upside down and a Solution using Poles A
and C can be found. Swiveling ADFE instead (as shown above) has the same effect.

B9. TRANSLATING SMITH DIAGRAMS TO SQUARED-RECTANGLES AND VICE VERSA

B9.1. TRANSLATING AN UN-CALCULATED SMITH DIAGRAM TO A RECTANGLE

If a rough Smith Diagram at drawn at random without calculating any Elements it is possible with some trial and error at least to draw the
rectangle. This can be done by looking at the notes in B9.2 and applying them in reverse.

The procedure will involve some trial and error and probably adjustment to the diagram. It is not easy and in fact more tricky than doing it
in reverse.
B9.2. TRANSLATING AN UN-CALCULATED RECTANGLE TO A SMITH DIAGRAM

If we draw a rough rectangle at random without calculating out the Elements it is also possible with some trial and error at least to draw
the Smith Diagram. An example below gives a clue to how this is done.

Firstly draw the outside of the Smith Diagram observing that 3 Elements radiate from the top and 4 Elements will meet at the bottom, and
that 2 Elements will connect each pole at left and two at right.

Then, in below 1 consider each internal vertical line - shown as abcde and observe the Elements to the left and right of each. Each vertical
line will need to be replaced with a circuit containing the same amount of Elements e.g. line a is bordered by 4 Elements and area a in below 2
by 4 Elements. It may require some experimenting and later adjustment to do it correctly.

RECTANGLE HORIZ SMITH DIAGRAM FOR THE
A B SAME
A B SOLUTION.
-TO- C
D
E E
C D

COMPLARE VERTICAL LINES HERE.. WITH CIRCUITS HERE.

B9.3. TRANSLATING A CALCULATED SMITH DIAGRAM TO A RECTANGLE
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The information in B9.1 and B9.2 applies and the procedure although simpler with Element numbers shown, still needs explanation which
appears more complicated than it actually is.
1. Draw radiating lines from top pole showing numbers across the top horizontal line 45, 44, 41 with downward arrows.
2. Look at vertical left Elements 45 and 34, 34 must adjoin bottom pole.
3. Look at vertical right Elements 41 and 38. 38 must also adjoin bottom pole.
4. Look at bottom horizontal line and insert any Elements not included so far 23 and 35, as 44 and 35 join the lines for 44 and 35.
5. Insert inner Elements. Remember to replace each vertical line with a circuit. Make sure arrow direction is correct e.g. in the vertical adjoining
45 11 44 and 12, the arrows for 44 and 12 are in an opposing direction since 45+11 = 44+12,

RECTANGLE HORIZ SMITH DIAGRAM FOR THE
R SAME
45 |7 44 A \ B SOLUTION.
J1 £2 3 4

3_ - - T
1112 35 D\ E
34 E 34\ 5 38
g 23 |P

COMPARE VERTICAL LINES HERE.. WITH CIRCUITS HERE.

B9.4. TRANSLATING A CALCULATED RECTANGLE TO A SMITH DIAGRAM
The information in B9.1. and B9.2. applies . As it is easier to carefully scrutinize the above diagram to do this than follow long confusing
instructions, no further comment!

B9.5. TRANSLATING BETWEEN HORIZONTAL AND VERTICAL NETWORKS
Networks differ from Smith Diagrams as
1. No currents values are shown - nor are direction currents and

2. No Poles are shown - but choices of Poles are available to look at. In the circuit chosen below the light numbers shown are the amount of

wires at each TERMINAL and the bold numbers the amount of wires in that individual CIRCUIT -
C

Alternative
Network for
Poles A & B.

Selected
Poles A B

2 D
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Above 1 and 2 represent the same Squared-Rectangle (it does not matter which one here), and it will now be shown how the second can
be found from the first .
1. Firstly observe that the circuits in above one are 3-3-3-3-3 and the terminals in Above two are also 3-3-3-3-3 if the poles at C and D are
ignored.
2. Reversing this circuits in above two are 3-4-4-5 and terminals in Above 1 are also 3-3-4-5 if the poles at A and B are ignored.
3. Now notice that there are 2 wires at A and 4 wires at B - total 6. There are 6 outer wires in above two.
4. Reversing no 3 there are 4 wires touching c and d. there are 4 outer wires in above 1.
5. The circuits surrounding b are 3-3-3 and at A, 3. Likewise the terminals between C and D are 3 and 3-3-3.
6. Reversing no. 4 the circuits surrounding C and D are 4 & 5. Likewise the terminals between A and B are 4 and 5.
From the above information, Above 2 can be found by degrees - the important thing to remember is that the terminals numbers in one must
translate to the circuits numbers in the other, and vice versa, throughout.
Though not easy it can be done with patience.

B9.5.1. OBTAINING ALL THE OTHER CIRCUITS RELATED TO A NETWORK

Above 1 happened to contain only one choice of poles at A and B. But for many networks many choices are possible and using the above
guides it is possible to construct all the connecting networks by the same method.
These networks are unrelated to each other, but all relate to the original.

B9.5.2. CHECKING TWO GIVEN NETWORKS WILL FORM THE SAME OR DIFFERENT RECTANGLE

Suppose above 1 and 2 are given to us, it is possible from the guides given in B9.5 to establish that they are the same Squared-Rectangle.
Conversely, had they related to different rectangles, the guides would prove incorrect sooner or later. This has important consequences in the
study of Squared-squares where two suitably different networks are found with the same Complexity value, so that a check for a Squared-
square can be made.

By investigating various combinations of poles available. See Section L for more on this.

B9.6. MORE ABOUT NETWORKS

In the following, external Smith Diagram wires are shown as “e”, and external wires as "f". Note that internal wires sometimes represent
external Elements in the actual rectangle.

Clearly e can be any integer of at least 4, but t can be any integer from 3. Inside any network are points each of which must have a
minimum of three wires radiating from it. These are shown as “p” and are any integer from 1 up.

B9.6.1. MAXIMUM ORDERS RELATING TO POINTS AND EXTERNAL WIRES
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It is easily seen that the highest Order to be found must be one which consists entirely of triangles. Below are networks for e4-p1 e4-p2
e4-p3 ... to e6-p3. When these are extended a formula for the maximum Order becomes evident.

D YYD

NETWORKS WITH 1,2 & 3 POINTS SHOWING MAXIMUM ORDERS

For each group the Order conveniently increases by three each time, with external wires from 4 upward and points from 1 upward. Notice
the several possible patterns for some, but notice also that this will not alter the Order, e.g. where 4 wires appear in a circuit a line can be
drawn left-right or right to left (above 10 and 11) to form the necessary triangles.

p =1 or one point orders 8 10 1214 16 18... for t = 4,5,6,7,8,9...
p=2orders111315171921...p=3 orders 14 16 18 20 22 24... p =4 orders 17 19 21 23 25 27...
From this the formula of MAXIMUM ORDER = 2e +3t - 3 can be found.

B9.6.2. MINIMUM ORDERS RELATING TO POINTS AND EXTERNAL WIRES
This is more complicated! Where e=4 it is best to show a $2223 solution, that is, show one pole with 2 wires only.

Where e > 4 it is best to show both poles with 2 wires only. Each point must have at least three wires joining it, so the trick is to make it
only 3 wires. The individual circuits will often have 4, 5 + wires, but some are forced to be only triangular.
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E=4
MINIMUM ORDERS
FOR POINTS &
EXTERNAL WIRES

E=5

E=6

Table of values of minimum orders

Minimum |e=4 |e=5 |e=6 e=7 |e=8 e=9

p=1 7" 8 10 12 14 16 then by intervals of two

p=2 9* 10 * 11 13 15 17 then by intervals of two

p=3 10 * 11* 13 * 14 16 18 then by intervals of two

p=4 12 113" |14~ 16 * 17 19 then by intervals of two

p=5 13** 116*™* |16~ 17 * 19 * 20 then by intervals of two

p=6 14** (16 ™* |1T7* 19 * 20 * 22 * then 23 and intervals of two

In any network the network can be considered in three parts, namely
1. Wires on the edge, or external wires = e and this amount is fixed regardless of minimum or maximum orders.
2. Wires from edge to a point = d.
If e = 4 d can be 3 (allowing for a single pole of 2 wires), or higher.
If e is 5 or more d can be e - 2 (allowing for two poles with 2 wires), or higher.
3. Wires connecting points = c. (d + ¢ = f the amount of internal wires ).
As 3 points can be joined by only 2 wires, 4 by 3, 5 by 4 points can be joined by p-1 wires, or higher. Putting these together if conditions are
suitable, the minimum Order is e (from 1.) plus e - 2 (from 2.) + p - 1 (from 3.) thatis2x e + p - 3. However, sometimes an extra
wire or more is necessary to prevent some terminals (other than poles) being joined by only 2 wires. Hence the lack of exact pattern in the
above table, where 2 x e + p - 3 applies to some values only. The amount of asterisks is the amount of extra wires found necessary.
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If e is at least 4 more than p there is no problem and the minimum Order is then 2x e + p - 3.

B9.7. QUANTITY OF SOLUTIONS FOR EACH ORDER

If a network for particular e and p values is selected showing a minimum Order, it is possible with some problems to find the amount of
solutions possible for it and higher orders.

At present, the possibility of duplications is ignored. Look at the diagram below e4 and p2 Order 9:-

A LINE AT EB OR AT AF CAN BE DRAWN.
\ ALSO A LINE BG OR AT FC CAN BE DRAWN.
E 4 B THERE ARE 4 WAYS OF INCREASING THE ORDER BY 1.
F/ THERE ARE ALSO 4 WAYS OF INCREASING THE ORDER BY
3 2, EB & BG, EB & FC, AF & BG, AF & FC, EACH OF WHICH
\/ CONVERTS THE NETWORK INTO TRIANGLES ONLY - WHICH

MEANS NO HIGHER ORDER RECTANGLES CAN EXIST.

Here is 1 solution for Order 9 since poles at EB cannot be chosen. 4 patterns for Order 10 and a further 4 for Order 11. Nothing is possible for
orders 12 and beyond.

If AF is drawn, note that poles ED become valid. Therefore, there appearto 1 x 2 + 3 x 1 or 5 solutions of Order 10 possible without altering a,
b, ¢, d, e, f, g in any way. Also there are 2 x 2 + 2 x 1 or 6 solutions for Order 6.
12 solutions are possible if none are duplications.

Further wires can be drawn for circuits of 4, 5, 6, 7... but not of course 3, and there are a fixed amount of combinations possible. For 4 we have
seen two combinations are possible, i.e. AF and EB in above.

B9.8. COMBINATIONS POSSIBLE FOR CIRCUITS OF 4, 5 AND 6

It is easily seen that 2 lines can be drawn within a circuit of 5, 3 within 6, 4 within 7 and so on. Finding how many combinations of 1,2 and
3 lines etc. can be drawn for circuits of 5,6,7 etc. can be confusing as it is easy to include unwanted duplications if not done with care.

A B B INDIVIDUAL CIRCUITS OF 5 (NOT COMPLETE NETWORKS)
C DRAWING SINGLE WIRES IS POSSIBLE AT
E>_ E C
AC AD BD BE & CE 5 POSSIBILITIES

DRAWING TWO WIRES - AC+AD, BD+BE, CE+CA,
DA+DB & EB+EC ARE 5 POSSIBILITIES

Hexagonal circuits are more complicated! Below there are 9, 24 and 12 combinations for 1, 2 and 3 lines - a total of 45.
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A B B 1LINEAC...FB (6) & AD,BE & CF (3) = 9 CON
2 LINES AC+AD,AE,CF,CE 4x6 = 24 COMBS
CFE C 3 LINES - AC+AD+AE & SIMILAR (6)
F 5+5 2 ALSO "N" SHAPED (6) = 12
COMBINATIONS COMBINATIONS 45 COMBINATIONS!
E

D D

B9.9. DETECTING SYMMETRIC NETWORK PATTERNS
Below are various types of symmetry where e = even numbers

V@E/ .

PN 0 |

2-FOLD 6-FOLD 2- FOLD ROTOR 4- FOLD ROTOR

B10. CALCULATING FROM SMITH DIAGRAMS

B10.1. CALCULATING RELATIVE VALUES OF CURRENT IN SD’S - INTRODUCTION

In certain respects there are some similarities in calculating out smith diagrams as in Squared-Rectangles but it is a little more tricky with
Smith diagrams for at least two reasons -
1. Difficult to decide which wires to choose as x and y
2. The direction arrows are often confusing. Only calculate from Diagrams if absolutely necessary. Always use rectangles if available. You may
consider translating to a rectangle is desirable before calculating!

B10.2. CALCULATING VALUES - UNKNOWNS xy - CHOOSING WIRES FOR x AND y

1. To calculate out the diagram below 1, first show the direction of current for each external wire and those adjoining the poles. Make
arrows face downwards. The # wires are left. Guess directions for these. Possibly downwards is best but avoid a > < > flow. e.g. Make CE ED
DF >>>and AB BD DF >> >
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2. Choose two unknowns x and y. some practice is necessary but as a guide A. choose 2 internal wires B. meeting at a point where only c.
3 wires join. BE and ED will do. It is now stressed that there are many differing ways of calculation possible and the method shown is just
one of many.

B10.3. CALCULATING BIT BY BIT A SMITH DIAGRAM

1. Call BD = x and CD =y. consider terminal D. now DF is the addition of both (imagine two rivers flowing into one) so is x +y.

2. Now look at the circuit BDF the current BD + DF = x + x + y so BF is 2x + y. Note that a current of 2x + y flows in one direction and 2x +y in
the other. Do not be fooled by the fact all three arrows point downwards!

3. Now EF at terminal E = DE + DF which is x + 2y. Again observe the flows of x + 2y in two directions.

4. Now CE=DE +EF =y + x + 2y or x + 3y, at terminal E.

5. Now consider circuit ACED. In one direction there is x + 3y and y (= x + 4y). In the other x and BC. x + 4y - x gives 4y for BC. at terminal C AC
=BC + CE =4y + x + 3y=x + 7y. Lastly at circuit ABC BC + CB = AB

so AB =x + 7y + 4y = x + 11y. The values are now complete.

B10.4. FINDING THE EQUATION AND RELATIVE VALUES OF x AND y

6. Consider terminal B where arrows towards B total x + 11y + 4y = x + 15y. This equates with arrows from b total x + 2x + y =3x +y. by
Kirchoff’s law x + 15y =3x + y. 14y = 2x which is satisfied with x =14 and y = 2. Both have a common factor of 2, so cancel downtox =7 and y
=1.

Note 1. If minuses occur reverse the direction of the arrow(s).

Note 2. If an expression such as 5x + 7y = 5x +7y occurs this is an Invalid equation and another terminal or circuit will need to be chosen.
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B10.5. CALCULATING ACTUAL VALUES OF ELEMENTS
7. Finally calculate each value in turn and translate diagram into a rectangle. [9] 33x32 is obtained. Note 3. You can equate the wires at the

poles or between the poles instead - one is fine the other useless, so look carefully.
Ao

H arrow

directions D ;"33’
2

guessed here X Xy < =

After some practice the instructions will be clearer.
B11. xyz CALCULATION WITH xyz

B11.1. CALCULATING WITH MORE THAN TWO UNKNOWNS x y z

Often with a more complicated Smith Diagram, only a small proportion of the diagram can be expressed in terms of x and y. When this
happens, a suitably adjoining wire is to be called z and the remaining wires calculated in terms of x y and z.

It may be that a 4th 5th... Unknown may prove necessary.

The amount of equations required is always one less than the amount of unknowns employed. Some equations may not include every
unknown. With xyz simultaneous equations like 3x + 2y - 5z = 0 and 4x + 5y = 7z are typical.
X y or z may turn out positive or negative or even zero, and if fractions arise will need suitable multiplying to make them all integers. As already
mentioned calculating out Rectangles rather than Smith Diagrams is always preferable.
The procedure is pure algebra so no more comment is necessary in this book.
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B12. ONE AND TWOFOLD SYMMETRY

B12.1. SMITH DIAGRAM SYMMETRY

1 Fold symmetry or Asymmetric is just another way to describe irregular patterns in Smith Diagrams, and to distinguish them from 2 and
higher fold symmetry. Whereas all symmetric rectangles give symmetric diagrams, the opposite is not true. If poles which are not
symmetrically aligned are chosen in a 2-fold diagram an asymmetrical rectangle always results.

The same is true for 3, 4, 5, 6... fold.

Note that symmetric Smith Diagrams are not always immediately recognizable as such, as in below 3.

EXAMPLES OF 2 FOLD SYMMETRY IN SMITH DIAGRAMS & 1 FOLD i.e.

N R
NZAN Y

Looks unsymmetrical
but is B when redrawn

NOTE THAT SYMMETRICAL PATTERNS CAN GIVE ASYMMETRIC
RECTANGLES AS WELL AS SYMMETRIC ONES, ACCORDING TO POLES.

B12.2. THREEFOLD AND HIGH SMITH DIAGRAM SYMMETRIES

Smith Diagrams can be conveniently shown in triangular form for 3-fold, square form for 4 fold, pentagonal form for 5 fold and hexagonal
form for 6-fold patterns

EXAMPLES OF 345 & 6 - FOLD SYMMETRY SMITH DIAGRAMS
4 )\/ /
/AQr A\

This is the first
Could also be regarded diagram redrawn.
as 6-fold Symmetry.

65



66

B12.3. SYMMETRIC NETWORKS

Symmetry in networks can be confusing and it is necessary to define the different types. To do this the networks is shown in circles. (See
later for O smith diagrams).

Imagine the network divided into four quadrants some or all of which are the same as indicated below:-

A & B DENOTE DIFFERENT
dh AB Aﬁ dh PATTERNS WHICH ARE REPEATED
&8/ \8la) A4 “p WITHIN THE QUADRANTS SHOWN,

ADJACENT CROSSING FOURFOLD CLOCKWISE
SYMMETRY SYMMETRY SYMMETRY SYMMETRY

To show the symmetry, draw a circle and fix a point at top middle.

(Note there are some patterns which appear to require points elsewhere, but these can be suitably redrawn to introduce the fixed point, so this
is not a problem).

Next the amount of external Elements is spaced out evenly as below-

DIVIDING NETWORK FOR 4,5 OR 6 EXTERNAL
@ @ @ ELEMENTS

External Elements refers to the amount of Elements down the left side of a rectangle plus the number at the right.

This may be even or odd. When odd, the only symmetry possible is found to be adjacent symmetry, whereas in even quantities of
Elements all four types are possible.

Where the external Elements are an odd number, surprisingly symmetric Squared-Rectangles do result as can be seen Below. Examples
of the four types of symmetry are shown for comparison -

POPE

ADJACENT SYM. CROSSING SYM. FOURFOLD SYM. CLOCKWISE SYMMETRY
A A

ey e

ADJACENT SYMMETRY FOR ODDS (5 & 9 ELEMENTS EXTERNAL)
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B12.4. CHOICES OF POLES WITH SYMMETRIC NETWORKS - ODD SERIES
The patterns below deliberately have at least one wires touching any point of the circles. (If no wire touches then obviously that point has

to be a pole and the choice severely limited, and is less than that shown below).
The points are labelled ABCDE .. Clock-wise. # means actual rectangle asymmetric and * symmetric.
Many other patterns could have been shown, but this does not affect the pole choices.

3 out of 5 are possible in e =5 cases, 8 out of 14 for e = 7 cases and 15 out of 27 for e =9 cases.

A
E=7 _
POLE CHOICES G A Ejﬁg
#AC (=AD) _ 45D (_EG)
#BD (=CE) C e oo

*BE 30OUTOF5 E D #BF (=CG)

*BG
‘B #CE (=DF)

E;f\

E B

),

D

A —

E=9 B #ACEAM  CE =Fh) “CF 8 OUT OF 14

C #AD (=AG) -
#CF (=EH)

_ #AE(=AR)  Cc Com)

Gw #BD (=GJ) -

e #BECR) L8 eq

F #BF (:EJ *DG

#BH (=CJ)

15 OUT OF 27

B12.5. CHOICES OF POLES FOR SYMMETRIC NETWORKS - EVEN SERIES
As previously explained there are four types, not one as in the odd series, but as two give the same results, only three are shown. Firstly,

e =4 cases.
E=4 A CHOICES OF POLES A A

#AC #AC #AC (=BD)
it #BD
D B A B D B
2 OUT OF 2 DMZOUTOFZ \J 1 OUT OF 2

C C
Now for e = 6 cases - the chart Below shows variations in the amount of choices of poles - 2,4 or 6 according to the type of symmetry.
Once again some rectangles are symmetric and the others not.
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E=6 A CHOICES OF POLES A A

O o B
N

E i
E | C E C
D ADJACENT D CROSSING D FOURFOLD &
CLOCKWISE
#AC=AE #BD=CF #AC=AE,BD & DF #AC=BF,BD,CE,DF& AE
*AD *BF #BF=CE A
#BE=CF *CE #BE=CF *AD AD=BE & CF
6 OUT OF 9 4 OUT OF 9 2 OUT OF 9

B13. FIXED SMITH DIAGRAMS

B13.1. FIXED DIAGRAMS IN GENERAL

Smith Diagrams are frustrating in several ways. Not only are there 2 diagrams for each rectangle with 4 possible drawings for each, but
the usual means of drawing them is_Unfixed. Although attempts to make rules for fixing them is fraught with problems there are a number of
ways of fixing. However an all-embracing system which caters for everything seems to be impossible to find. The next sections deal with
4 distinct types each with advantages and disadvantages. For example the y and + representations only cater for xy and xyz solutions
respectively, and some xy solutions defy a y type representation.

The circular system is a good one but fails in representing symmetric Smith Diagrams in a symmetric fashion.

Ideally we need a system for which each rectangle has one and only one fixed Diagram where the x and y types can have several ways of
representing a single solution.

Another problem encountered is that after drawing a Diagram, a part may be rather empty whilst another so overcrowded to be
unreadable. There is probably some advantage in having more than one wire in a straight line, that is have as few straight lines as possible.
See Below.

GOOD & BAD FORMATS OF SMITH DIAGRAMS.
UNFIXED TYPE.

OVERCROWDING

CAN BE OVERCOME
BY REDRAWING. STRAIGHTENED UP VERSION OF THIS!

THE FIRST LOOKS BETTER AS WELL.
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B13.2. FIXED DIAGRAMS AND SYMMETRIC SMITH DIAGRAMS
Ideally a fixed diagram needs to be found which will look symmetric when it is actually symmetric. This is difficult to achieve.

B13.3. Y TYPE SMITH DIAGRAM REPRESENTATION

"KINK" _, SIDE$
s 4

| 4 | 4
2\3 . \( X‘V % x| Y . \/ X_
1 6 6

3 ADD SIDE 6 ADD SIDE 5 ADD SIDE 4
4
3 3
1 ‘ 5 X 1y NN
6 1
1,3,5 ARE SIDES ADD SIDE 3 ADD SIDE 1

2,4,6 ARE POINTS WHICH FORM THE PRONGS OF THE Y SHAPE, THE SIDES 1,3,5 CROSS
FROM ONE PRONG TO ANOTHER.
The type of construction above works only on xy solutions, and is largely explained above. x acts as side 2 a prong “\” and y acts as side
4 a prong “/” Side 6 representing x + y points downwards from the central point. The numbering system is shown (other positions could have
been chosen).

B13.3.1. ACTUAL EXAMPLES OF Y SMITH DIAGRAMS

Below are three ways of representing [9] 69 x 61 vertical complexity 61. In completing the rectangle the Elements 25 and 36 can be added
as sides 2 and 3, or 4 and 3 or 2 and 4 as shown in Below 1, 2, 3. The last is satisfactory as the upper pole cannot be in two places at once, and
is ignored. We will regard the last Element as side 3 the “kink” having been assumed to occur at top left. (The format could have been done
several other equally valid ways). In Below x and y are -2 and 9.
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Y SMITH DIAGRAMS FOR [9] 69 x 61 (HQRIZQNTAL)

36 25
2
25
9 9

% 16
Y 16

28 28

CORRECTLY DRAWN BUT WITH Two INCORRECTLY DRAWI
DIFFERENT TERMINATIONS

This is not ideal but unavoidable in this case. There are other problems too. Some x and y choices will not have an x + y Element at
position 6 available and a “v” diagram results - in such cases sides 1 and 5 may require curved lines to make sense! If y diagrams are drawn
randomly and calculation attempted, it sometimes happens that 3 or even more unknowns are necessary to finish it. See Below. Although y

diagrams and the related x and star diagram, which are mentioned later, are interesting they do not seem useful enough to adopt!
EXAMPLES OF WRONG DIAGRAMS!

THIS DIAGRAM AROSE BY
CHOOSING X & y

IN A PLACE
WHERE NO

SIDE 6 EXISTS
THUS FORCING

AV SHAPED
PATTERN & THE

NEED FOR UNWANTED CURVED LINES!

THIS CANNO
BE CALCULA
X & y ONLY

THIS EXAMPLE WOULD NEED
TO BE DRAWN IN "X"FORMAT

USING

B13.4. X TYPE SMITH DIAGRAM REPRESENTATION

Below shows the format, which requires x y and z to all border an Element at x + y + z. Since any xyz type solutions require z to be

detached from x and y this means this representation could not be used for all xyz solutions.

B13.5. STAR TYPE REPRESENTATIONS

Also shown below is a format for xyza solutions. Again this requires all unknowns to be in line together, whereas z and a will often need

to be detached to permit calculation. The idea can be extended to have 6, 7, 8 prongs etc.
These have been shown for reference purposes only as they are not worth using in practice!
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X SMITH DIAGRAM STAR SMITH DIAGRAM
6 THE NUMBERS

S
° ) INDICATE THE SIDED
\ 2 X /y 7 ADDED. ASIN"Y"
» 5 TYPE EVEN NUMBERS
( a 2
1

3

M <

WORK ALONG THE
8 PRONGS & ODD
o  NUMBERS BETWEEN
) 10 TWO PRONGS.

N

2
7

B13.6. SQUARE SMITH DIAGRAM REPRESENTATION
Variation on the normal Diagram is to replace the poles with a thin line at top of bottom and turn the structure into a square. An attempt is
then made to make which will hopefully fix the diagram.

- X< -°"- - - =Tt = T T/ 7T ovmr I NI\ I_.I.LJ VU N\ LI

ONE POSSIBLE WAY ANOTHER POSSIBLE
ALTERNATIVE PATTERN.

N

165 NOTE 123V OF COMPLETING THE 14!
\ EQUIDISTANT 165 DIAGRAM.
ELEMENTS 45 oL
POSITIONS
i MARKED & 76
EXTERNAL

N[l ELEMENTS

120 NOTED 66 /

75 47

As always the positioning of the internal points causes the main problems. In the Above case where there are only two at E and G E could
be on direct line between AB AC or AD and G on line between CD AD DE...

B13.6.1. ADVANTAGES OF BOX SYSTEM

1. Possible congestion at poles avoided.

2. Fixed square shape and equidistant throughout.
3. Poles clearly defined.
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B13.6.2. DRAWBACKS OF BOX SYSTEM

1. Difficult to fix as so many combinations possible.

2. Pole positions fixed are so useless as a network which disregards poles.
3. Symmetric patterns will not be obvious. etc...

B13.7. O OR CIRCULAR SMITH DIAGRAM REPRESENTATION

"O" TYPE SMITH DIAGRAM & RECTANGLE FOR [13] 480 x 463

205
X 275 - X
135
65 X
92 2_‘7
188 50
% 23 123
P 73 X

O O
123 3

Above shows an O Smith Diagram and the connected rectangle where the external Elements in the diagram are indicated by X’s.

B13.7.1. RULES FOR CONSTRUCTING O SMITH DIAGRAM
Firstly arrange the rectangle horizontally so that the largest corner Element is at top left. There is a general rule that any internal lines
drawn inside the circle will need to show equidistant points on it if 2 or more Elements are to show along it. Then-
1. Show positive pole at top of circle.
2. Divide the circle into the same amount of points as there are Elements marked x in above 2.
There are 5 s0 360° / 5 = 72°. See ahove 4.
3. Mark the bottom pole position. This will sometimes be at the bottom of the circle, but otherwise somewhere on the left hand side.
4. Show outside Elements with arrows i.e. those marked x in above 2. (B13.6.1)
5. If there are 3 or more Elements along the top of the rectangle go to 6. If only 2 then draw a straight line from the two points nearest the pole.
Look to see which Elements connect them. In Above 2 only 70 connects 275 to 205. If more than one Element needs to be inserted divide the
line up and insert each, taking care to get the correct arrow directions.
6. Now work round the edge of the circle clockwise from the top pole or point 1. If 5 applied go to the next point 2.
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Points 2-3 how is 135 made up? With 70 and 65. But note 70 already inserted so draw a line from points 5-2 and insert 65. Points 3-4 how is 123
made up? 50 + 73 neither number has been used so draw a direct line from p3-4, divide in two and insert 50 and 73. Points 4 -5 how is 188
made up? 92 and 96. Neither number yet used so direct line p4-5 drawn and 92 and 96 inserted. Lastly (in Above example) points 5-1 no action
- already occupied.
7. Final stages. It is difficult to give precise rules which can be literally applied for all rectangles. Further lines drawn will connect with the
points not touching the circle. In Above example these fall within the triangle p3 - p4 - p5.
Firstly look to see if any vertical groups of 3 are left. Yes 23 + 73 =96, so 23 can be drawn as shown.

Now 27 borders 50 and 23 (or 65 and 92) and can be inserted. Finished! In tricky cases it may seem that bent lines are necessary but with
care this can be avoided. Try driving a line through the middle and then fitting in remaining Elements on either side.

B13.7.2. DRAWBACK OF O SMITH DIAGRAM SYSTEM

Although with definite advantages O Smith Diagrams have these snags -
1. In higher orders crowding of Elements will occur - more annoying still where other parts very sparse.
2. The 2nd pole is often not at the bottom of the circle.

3. Ideally solutions with the same complexity should look identical except for the choice of poles, but do not in O DIAGRAMS. 4. Where the
SYMMETRICAL SMITH DIAGRAMS  SHOWING THE

PROBLEM!
IDEALLY THE
SECOND
DIAGRAM
SHOULD BE
PRODUCED
: : o OSD DIAGRAM
diagram is actually symmetric this does not show up, see below. SYMMETRICALLY DRAWN
TEST FOR SD SYMMETRY COMPLEXITY 209
21 | 66 VERT LINES READ 3333
72 5 <3 PAIRS INTO 33 33 33
[T] 32
19 <4 COMPLEXITY 127
56 18 56 61 <3 HORIZ LINES READ 33 4
37 DO NOT PAIR OFF

A3 A3 A3 A3 A3 A3 K\
[11] 209X127 3|3
3

g 3/

COMPLEXITY 209
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B13.7.3. DETECTING SYMMETRY IN SMITH DIAGRAMS

Although any symmetric rectangle will clearly result in both horizontal and vertical symmetric Diagrams, there are many asymmetrical
diagrams which result in symmetric Diagrams.

Whenever symmetric Diagrams exist it means that at least two (sometimes more) solutions are identical despite different choice of poles.
Thus poles at AB and CD Below give the same solution, namely [11] 209 x 127.

B13.8. GRID SMITH DIAGRAMS - OR G SMITH DIAGRAMS

9 0
50 27
60 23 35
73 46
74 50
Vav4 52
80 19 59
82 70
84 75
89 79
o2 2 112
iio S [22] 110 x 110 and [21] 112 :

GRID SMITH DIAGRAMS

Two examples of GRID Smith Diagrams are shown. They have been constructed as follows - for each case:-
1. The numbers to the left represent the distances between the top of the Rectangle and each of the horizontal lines occurring within the
Rectangle. The bottom number representing the bottom line is of course the second dimension of the rectangle.
2. A curved rectangle has been drawn enclosing each.
3. The normal arrows have not been shown as in this type of construction the arrows always point downwards (except for Element 0 which is
shown as a horizontal line).
4. Note that the internal points a to f in the first Rectangle are drawn vertically equidistant between the two vertical sides
i.e.|]abcdef]|.
5. So where exactly are the points a to f put? Every SR contains some horizontal lines which do not touch any sides and it is these lines which
show as internal points in Smith Diagrams. In this example the vertical positions are indicated by 1st 2nd 3rd 4th i.e. are the order the lines
appear when viewed from the left. Now let suppose the line “32 down” is actually the 4th horizontal line in the Rectangle out of 12 in all. With
two vertical sides and four positions (1st to 4th) we have 6 verticals on which points will occur.
The point at 32 down is put 3 along and 4 down in a rounded rectangle representing 6 along and 12 down.
6. For better or worse the two poles are shown half way along the top and bottom lines.
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3rd

2nd T 0
Ist| —— | 32down (say)
\L —th 58 down (Say)

61 down (say)
83 down (say)

115 down (say)

B13.9. ADVANTAGES OF G SMITH DIAGRAMS

1. Except for Element 0, all lines point downwards in the direction of the arrow.

2. There is no need to show arrows at all!

3. The horizontal Distance Series of numbers need not be shown - alternatively -

4. If the Distance Series is shown, then there is no need for any Element numbers to be shown!

e.d. in above 1. The line running from Horizontal 89 to horizontal 110 will be 21 that is 110 - 89.

5. In theory at least all patterns might be illustrated by a Rounded Square of the same size, providing the horizontal divisions are made equal,
and likewise the vertical divisions.

B13.10. DISADVANTAGES OF G SMITH DIAGRAMS

1. Look at Element 18 in [22] 110 x 110 solution. If drawn as a straight line, see what happens!

This is why Rounded Squares have been employed.

2. Look at above 1 and observe what happens when these lines are viewed from the right. We get 3rd 4th 1st and 2nd which is not 1st 2nd 3rd
and 4th in reverse, as would be helpful! So as proposed, the SD for the solution with the largest Element at top left is not always an exact
mirror image when the largest is at top right.

B13.11. REVISING THE PATTERN
This second problem can be overcome however by considering the midpoints of the line from left to right as shown here-

|

2nd | 3r¢
J

i
- B
1st), 4th

A\‘/
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But it can be annoying in practice to calculate these midpoints from the left-hand vertical line!
There is another problem. Suppose in above the midpoints for 1st and 2nd, and for 3rd and 4th happen to be identical!
These options may be considered:
1. Let the one higher up take precedence i.e. order BAC D, or
2. Put both in the same vertical,i.e. AACC.
3. Let the longer line take precedence i.e. A B C D. Option 3 is rejected since many lines happen to be the same length.
In Option 1 the upside-down solution SD would give the order of A B D C which is but B A C D in reverse, so should be rejected.
Option 2 is the best one. The cramping effect of using fewer verticals may be a slight problem however.
wrxxx** | NEED TO CHECK IF THERE ARE ANY CRAMPED UP PATTERNS, ALSO DO SYMMETRICAL SOLUTIONS GIVE SYMMETRIC SD’S .
ALSO DO SYMMETRIC SD’S ACTUALLY APPEAR SYMMETRIC (VERY UNLIKELY

B14. POINT & MOSS DIAGRAMS

B14.1. DEFINITION

A POINT DIAGRAM is a representation of a Squared-Rectangle at first resembling a Smith Diagram but quite different in practice. Some
examples are below, and their construction follows a pattern.
If each square Element in a Rectangle is replaced by a numbered dot and the adjoining Elements linked by lines, a similar effect to a Point
Diagram is obtained, except that in a Point Diagram a square is always drawn and a segment from top left to 1st from left at bottom drawn. The
largest corner is always shown at top left.

B14.2. CONSTRUCTING A SQUARE POINT DIAGRAM

1. Show the corner Elements as corner dots e.g. 56 42 41 29 in [13] 98 x 97.

From now on all dots (Elements) are shown equidistant along the lines.

2. Show side Elements 26 and 28 by dots.

3. Draw a line from top left to the first dot after the bottom left hand corner (28), i.e. 56 to 28. 4.

Divide this oblique line by dots / Elements bordering 56 and 41 (namely 2 and 13).

5. Working clockwise around the rectangle, draw lines to indicate adjacent Elements and space out dots.

If done correctly, a fixed position will always apply to each dot. (NB these instructions brief) ******etc******

6. Examining various segments a. 56 2 16 42 b. 56 41 13 2 c. 7 4 3 and a point indicates those Elements which border it. Each segment has
numbers surrounding it which add to 0 if certain numbers are made negative, e.g. 56 + 2 =42 + 16

and56+2-42-16=0and 16 + 2 =11 + 7. The positive numbers surrounding each segment must total an even number and half of this number
represents the line. e.g. 56 + 42 + 16 + 2 = 116. Half is 58. Here are some examples of Moss Diagrams.
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[15] 106X105 47

[13] 98X97
42 CQ
S [ 43 40 59
1
8
.
9 1 .
26 A 13 2
4 2
6 1 3
5 54 > 7
BN
4 29 34 23
25 24 46 21 16

Whether these are useful in practice remains to be seen. For certain solutions problems arise which alter the rigid system above.
Therefore these diagrams cannot be regarded as absolutely “Fixed” which is a pity. Something better is needed -

B14.3. THE MOSS DIAGRAM
The Writer has now realized that a better type of construction can be made based on the layers (top to down) and the columns (left to

right). Each Element is still represented by a point (not a square as in Rectangles, and not a line as in Smith Diagrams). The square format is

not satisfactory.
The Elements in the Moss Diagram can be presented in other similar formats, but probably the best is this:-

1 18 %64\\\\
‘ 39— 125
164 109 8<2I \
180 1 25 ////37
2 61————1%
39 3 Tl
23 4 [12] 344 x 289
48 MOSS DIAGRAM
109 25 37 125 .
61 12 6
49 Top to Bottom
1 2 3 456 7 Left to Right

The construction always has a line at the top adjoining one on the left. The Elements are accurately shown in rows and columns -
following the Grid pattern. (In this case 6 rows & 7 columns).
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The Moss Diagram is a rehash of the Grid Squared-Rectangle with points replacing squares for each Element.

In this construction Poles don’t exist and there are no arrow directions.

This construction is nearer to a Rectangle Diagram than a Smith Diagram. It differs from an SD in that direction arrows are not shown, and the
Elements are denoted by points not lines. Although it might be mistaken as a Smith Diagram, it is quite different and the number of connecting
lines being a lot more than the Order number 12 (The SD has 12 lines). In any of the Sectors formed, the surrounding Elements equate to zero,
e.g. 180 + 23 - 164 -39 = 0. Likewise, 180 +23 = 164 +39. ( 203).

The advantage here is that Moss Diagrams are absolutely fixed (unlike SD’s). Another advantage is that there is one pattern for each
solution, not two as in SD’s. (Ignoring up-side-down solutions which will of course give a very different Moss Diagram). Unlike SD’s, the Moss
Diagram (MD) is the same (but sideways) when the rectangle is turned 90°.

Many Moss Diagrams can be successfully drawn entirely with straight lines. But in the above example a straight line drawn between 125
and 49 would run to the left of the 37 which is incorrect! So a right-angled curved line has been shown instead. Inspection suggests that
problems only occur with the Element at the south-east corner, or one touching the bottom line. If so, a right-angled curved line will always
solve this problem.

B14.4. PRACTICAL USE OF MOSS DIAGRAMS
They may prove useful but there don’t seem to be any advantage compared to Grid Patterns.

B15. INTERESTING SD PATTERNS

B15.1. IRREGULAR & SYMMETRIC SMITH DIAGRAMS & DIAGRAMS WITH INTERESTING PATTERNS

Already briefly mentioned the subject is considered elsewhere as section b is concerned with basics.
From now on in this book, Smith Diagrams are mentioned as and when required within various subjects since it is inappropriate to consider
them in isolation and disregard other features.

B16. CODES IN SD PATTERNS

B16.1. INTERNAL AND EXTERNAL POINTS IN SMITH DIAGRAMS

A CODINGS
P40 P51 P4:4
\ NV

/ D
4 External & 5 External _
0 Internal Points & 1 Internal Point 4 External & 4 Internal Points
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Look at above where each Network shown has a number of External Wires or Elements which always equal the number of Points i.e. 4, 5
and 4. Internally there are no points in the first and 1 and 4 in the others.

We shall Code these as P4:0 P5:1 and P4:4 respectively.
Next observe that the Order (that is, the number of Wires) can only be 5 in above 1. But in above 2 with Order 8, wires could be added at
various combinations of AF, DE, CD and FG giving Orders of 9 or 10.

In the case of the Maximum possible Order all the circuits are reduced to Triangles only. Above 3 shows an Order 13 Solution the
maximum for P4:4 since each circuit is a triangle which cannot be any further divided.
For patterns to be valid:-
1. There must be at least 4 points or 4 wires externally.
2. Each Internal Point must be joined by 3 or more wires (see F Above).
3. External Points with only 2 Wires are situated at top or top and bottom and will dictate where one or both Poles must be situated. In the
Case of P4: anything the bottom Pole must be joined by 3 or more wires however (to avoid $2222 solutions).

B16.2. MAXIMUM ORDERS PER P: CODINGS
In testing various network patterns P4:0 to P4:6 have maximum Orders of 58 11 14 17 20 and 23 whereas P5:0 to P5,6 have
7101316 19 22 and 25 and P6:0 to P6:5 have 912 1518 21 24 and 27.
Note the increments of 3, and that each set starts with 5, 7, 9 ... with increments of 2.
So for P x : yitis found that the Maximum Possible Order is 2x - 3 + 3y

B16.3. MINIMUM ORDERS PER P: CODINGS

As the Table below shows, Values increase by 1 or by 2 as the values of x increases by 1 or y increases by 1.

There does not appear to be any fixed formula.
Thus for P5:3 for instance the Order can be 11 12 13 14 15 or 16. In the Case of Order 16 the Smith Diagram will have exclusively triangular
circuits whereas for Order 15 one circuit will be bounded by 4 wires.

P4.0 5 P5:07 P6:0 8 P7:010
P4:17 P5:18 P6:110 P7:111
P4:29 P5:210 P6:2 11 P7:213
P4:310 P5:3 11 P6:3 12 P7:3
P4:4 12 P5:4 13 P6:4 14 P7:4
P4:513 P5:5 14 P6:5 P7:5
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. noL © | [11]209x 127
d ) b Horizontal SD E
19 61 Pattern consists
18l 1,56 of Triangular 7
55 1 //
37 Circuits only

C

The P Code for the Above is P4:2. Consider the elements at Ihs and rhs - there are 2+2 =4

Now look at all Horizontal lines in the Rectangle. Now eliminate the top and bottom ones. Also eliminate those which touch the left or right
hand side. We are left with ab and cd = 2 which coincides with the number of External Points in the Smith Diagram.
Thus by observing the Rectangle alone, the Code is P4:2..

A
3 4
\ Al A2 B1 C1 D1 D3 E2 E3 12 13

C C
Al B1 C1 D1 \

Combinations possible for P5:3 network above. 1234 123 132 213 231 312 3211213142324 3412 3 4 ( x) 18 in all, some of which give
duplicate Rectangles.

@@@$$@

There are many other patterns for Order 16 (the maximum Order for P5:3) each of which can be diminished in a bewildering variety of
ways! Just some are shown above. Again, many patterns give duplicate Rectangles.
For example in Above D1 can be replaced with C3, E3 with D2, A1 with B2, 23 with E1, 12 with A3 etc.

Note some combinations of these may be invalid i.e. leave less than 3 wires at any of the points (apart from the Poles).
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In each case there are 8 separate triangles and 8 Wires radiating from the External Points each of which must link with the three internal points
1 2 or 3. The number of wires between the three Internal Points is either 2 or 3.

& LAYERS - 0 OUTER RING
A 1 NEXT RING i.e CDE*
G 2 NEXT RING INSIDE i.e. FGH*

3 NEXT RING INSIDE i.e. J*

*In this example RIMS 1 & 2 are bounded
by 3 wires but can comprise 4 5 or more.

The most inner one can be 3 or more - or a
single point as shown here.

B16.4. RINGS OF WIRES AND RINGS OF TERMINALS
Every Smith Diagram can be broken down into a series of “Rings”, and between each set of rings further wires (Elements) connect them.
1. For instance in above the Outer Ring - Code”0” consists of 6 wires.
2. Inside that are 3 wires bounded by CDE, which is Coded “1”..
3. Inside that are 3 wires bounded by FGH, which is Coded “2”
4. Inside that a single point J which is Coded “3”
But between each Ring and the one inside it, there have to be wires, e.qg.
5. AC and BD etc. followed by
6. CG and DH and EF then followed by
7.FJ and GJ and HJ
Thus in above Q:00 = 6, I.E. the Quantity of Wires from Ring 0 to Ring 0 is 6. Q:01 = 6 wires from Ring 0 to Ring 1.
Q:11 is 3 wires from Ring 1 to Ring1and soon-Q:12=3Q:22=3 Q:23=3and Q:33=0

B16.5 A CURIOUS RELATIONSHIP

Look at the Pattern shown below. Four relationships (apart from obvious ones such as C + F = H) are found to apply:
1.A=B+C2.F=D+E3.C=gx2and4.f=hx2.

There seems no immediate reason for these relationships. But test it for yourself by choosing any integers for C and E and calculating all
the values for A to H.
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i B

| have has put C as 18 and E as 1 with the result as below 1.

Sure enough47=29+18;38=37+1;18=9x2and 38 =19 x 2!
The Values shown below are of course samples and not part of any real Squared-Rectangle of course.

A clue as to why the first two relationships exist is found by drawing the Smith Diagram which is a Triangle with two Elements on each
side with two internal extra Elements. Note the positions of the three bold Elements, and that of the three underlined Elements. Also of 38 and
19 and 9 and 18 where one Element is twice linear the other.

This pattern is similar to a ROTOR (described earlier) with the additional wires or Elements forming the STATOR (nor shown).

37
47

19|18

38

29

. 20 1 /
| expected that by taking Algebraic values for the above pattern that these Relationships would become very obvious - but NO!

Now for an actual Rectangle incorporating this pattern (left hand side) - [13] 161 x 128 - once again the four Relationships apply. The right hand
side has no special relationships.
16 + 52 = 68, and 14 + 46 = 60, and 30 is half of 60, and 8 is half of 16.
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46 47
68
30 16 15
32
8 14 17
49
60 5o

Look at the diagrams below.
This shows a 2233 Solution where the Elements B G and C are connected by a single Element F or x.
Regarding the Dimensions as m x n the Algebraic equivalents have been calculated.
A is found to be equal to bothm -n + x + 2y and n - m + 3x + 2y.
Equating these we find that2m=2n+2xsom=n+xsoD=E +F.
Likewise A is found to be the sumof Band C,soA=B+C

A D
m-n+Xx+2y n-x-2y

=Nn-m+3x+2y

m - 3X - 2y xX+y C Yty \G—/
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It does not follow that the remaining Elements within the shaded area in above 1 will always be in sets of 3 where one is the sum of the
other two. Likewise in above 2 the pattern inside the triangle may be symmetrical or otherwise.

D
120 101 115
B 14 A
44 | 43 29
25 E / ,
95 20 71 l(I)EO v
C

[13] 226 x 215. When Triad at left is removed the Solution becomes

[10] 57 x 55 of Sides 2233
Now consider above 1. Removing the Triad at left we obtain [10] 57 x 55 of Sides 2233 in which the Elements at A B and C have the

relationship of A =B + C as proved above, and also D = E + F also shown above.
So what happens when a Triad is added as Above1? Yes these equations still stand: 101 =1 + 100 and 115 = 44 + 71. Note that the Triangular
pattern in the Smith Diagram is unchanged by the Stator Wires now are four in number in Above 2. In fact if the Triad is replaced by an Octal or

Pentad etc. A will always be B + C and D be E + F as only the pattern of Stator Wires changes.
Now look at a slightly different Pattern as Below. Here it is found by inspection A - B =C i.e. A is the total of B and C (Linear), and that E is
twice D (Linear). Since A - B is clearly F too (assuming F also forms part of the pattern) it means F and C are equal. So all Rectangles including

this pattern can never be Perfect.

A B In this pattern -

A-B=C

ﬂ and E=Dx 2

B
and if Fis there then %C
E C F = C and the Solution \U/

D Is bound to be Imperfect.
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B17 COMPLETING THE TRIANGLES

B17.1. COMPLETING THE TRIANGLES

In any Smith Diagram there are always some individual circuits of just three Elements though often there are some with 4 or 5 or 6 or more.
Parts with just three Elements naturally form a Triangle in the Smith Diagram.

In any Squared-Rectangle vertical lines exist and often these border just three Elements to left and right of them. Like the above some will
have 4, 5,6... etc.

G
10]
i 44 33 [
36 30 [9] 66 x 64 (RI 2) 44 " 191 % 88
14 6 Bounded by oL g -3 22
-l’:2 16 4 Elements a4 e (RI 11)
28 F 44 33
20 | 13
B—p

To demonstrate the above, vertical line AB is bounded by 8 + 20 = 28 (three Elements) and the same is true for CD & FE. But at GHQ there
are 4 Elements; 36 + 8 = 30 + 14. The Corresponding Smith Diagram shows 3 “Triangles” marked T and an area bounded by 4 Elements. Now if
another Element is inserted at GHQ the Solution changes from [9] 66 x 64 (33 x 32) to [10] 121 x 88 (11 x 8) shown at right.

This larger Solution will be called the CTS or Completed Triangle Solution.

The point of all this is this - no matter what Solution is chosen at random - it is always possible to change it to a Solution containing vertical
lines with only 3 adjoining Elements throughout and at the same time with individual circuits in the Smith Diagram composed of Triangles only
- the CTS

Some Solutions already have this property and no change is necessary.

Others will need several more Elements to Complete the Triangle. Also the same principle can be applied to Horizontal Lines and the alternate
Smith Diagram, but the number of Elements to Complete the Triangle may be different.

Actually no Squared-Rectangle has exclusively 3 Elements in every horizontal and every vertical line and this means two CTS Solutions
exist for any given Solution (one vertical & one horizontal).

Where there is an individual circuit of 5 or more Elements - several Elements (all of them Vertical) have to be added to Complete the
Triangles. For example with 5, two Elements need to be introduced. There is more than one pair possible.

Work has to be done to determine whether any interesting relationships exist e.g. any rules concerning number of Elements etc.
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\ In this Smith Diagram there are three
@ Individual circuits with 4 Elements and

\ \@ one with 5.
@ @ To Complete the Triangles note the
\ / positions of the 5 extra "Vertical"

@ Elements. 5 happens to be the total of
the excess Elements above three.i.e.1+1+ 1 + 2 here.

The number of circuits goes up from 5to 10 (triangles).

B18.1. MATRIX
Looking at the MATRIX given for an Order 10 Solution it occurs to me that an extra final line can be added as per P6 below.
1. Line P1 (for any Solution) will always have positive ones in it only, whereas the
2. Final P line will always have negative ones only.
3. The In-between P lines (i.e. P2 to penultimate) always have both positive and negative ones. When the actual Elements for these are
considered the ‘plus’ set will always total the ‘minus’ set. e.g. in P2 the Elements for P23 + P26 = Elements for P12 (asterisked). Likewise P36
and P34 with P13 and P23 and so on.
4. Not surprisingly, the Elements for line P1 will total those for P6 since both are the horizontal of the Rectangle.
12 13 14 15 23 26 34 36 45 56
1111000000P1Line A
-1*0001*1*0000P2B
0-100-101100P3C
00-1000-1010P4D
000-10000-11PSE
00000-10-10-1P6 F

B19.1. ANOTHER SYSTEM OF RECORDING SOLUTIONS - GRID DIAGRAM TABLE
Another system close to that just shown is -

ORDER |AB |/AC |AD |AE |AFI |[BC |BD |BE |BF |CD |CE |CF |D DF EF DIMS
9 4 |5 6 - X 1 |- 3 - - - 6 1 5 4 15x11
9 15 |18 |- - XX |- |7 8 - 4 - 14 1 10 9 32x32
9 33 |36 - XX |- |5 - 28 |2 9 25 7 - 16 69x61
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10 2 |3 3 - X 1M1 - - 1 - 3 1 2 8x6

10 15 |15 |- - X |1 |- - 11 |1 - 11 2 - 8 30x26
10 27 130 |- - | XX |- 11 |13 |- 8 - 25 2 17 15 97x95
10 17 123 |25 |- | XX |6 |- (G - - 24 3 22 10 65x47
10 4 |57 |- - XX |3 |7 - 44 |4 15 |41 11 - 26 111x98
10 95 |60 |- - | XX |- 16 |- 39 11 |16 |34 4 23 19 115x94
10 M1 4 45 |- | XX |3 |- - 38 |- 12 135 11 34 23 130x79
11 4 |5 5 - X 1 1 2 - 1 1 9 5 - 4 14x10

11 90 |95 |- - XX |5 |24 |- 61 |19 [25 |56 6 37 3 185x151
1 66 |71 |72 |- | XX |3 |- - 61 |1 19 |56 18 99 37 209x127

All possible Solutions (Valid) which contain just 5 rows of Elements - 6 lines when the bottom line is included which are termed ABCD E F.
There is always a value for AB and one for the last in the list - here EF. Where no value applies a dash has been shown (NB. these are NOT
to be regarded as zeros). Within each “A- set” (AB AC AD...) the Elements go up in size e.g. 17 23 25 and the same is true for the B C D... sets

also.
The System is explained below -

A
25 | 17 23
B (6
D 1114 -
>—F
22 | 19 24
F

GRID DIAGRAM TABLE

Labelling horizontal lines from top to bottom ABCDEF..
25 spans from line Ato line Di.e. "AD" Likewise 5, CE
22, DF and so on.

In Smith Diagram terms, 25 in the above solutions lies between lines A & D (AD), 5 between C & E (CE) and so on.

One advantage of GDT is the neat and fixed format which is produced. Another is that it is a Smith Diagram related and to date is the only
FIXED REPRESENTATION OF A SMITH DIAGRAM I have been able to find, despite considerable effort.
Disadvantage - although Rectangles are easily converted to a GDT, attempting to draw a Rectangle back from one of these GDT lines can

prove a problem!
For a given number of horizontal lines (equating to Smith Diagram terminal points), the Solution Orders will vary a bit.
Also not all solutions for any given Order have the same number of lines (e.g. [10] 105 x 104 is missing in the Above list).
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C. ELEMENTS

C1. COEFFICIENTS

C1.1. x AND y COEFFICIENTS - DEFINITION
In an algebraic expression say -3x + 6y, the coefficients are -3 and 6 and are shown as - 3~6.
In calculating with x and y Unknowns we obviously start with x and y as positions 1 and 2.
For clarification we will always use x +y as position 3 next. Thus x - y will only be used in addition to x + y and never instead

POSITION 1 x OR COEFFICIENT 1/0-1 POSITION 4 HAS THREE OPTIONS AT AB CD EF
POSITION 2 y OR COEFFICIENT 0/1-2p0g|TION 4 AB 2x+y 2~1-4

A—C AT CD x-y 1/~1-4
1ls AT EF x+2y 1/2~4
x|y 2 NOTE: THE FINAL NUMBER IS TO BE REGARDED
X+y 3 AS THE MINIMUM POSITION NECESSARY
B F RATHER THAN THE ACTUAL ORDER IN A CALC.

POSITION 3 x+y OR COEFFICIENT 1/1-3
POSITION 5 ONWARDS - THE NUMBER OF

COEFFICIENTS ACCELERATES, AND ARE WORKED FROM TAKING EACH POSITION 4

C1.2. INDEPENDENT SETS OF ELEMENTS

In calculating xy solutions some Elements are found to exist in coefficients of x only or y only.

Below shows a common example of this where abcde... are completely unaffected by whatever value is given to y and are found to be x
4x 15x 56x
209x....

Next page>
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AN EXAMPLE OF INDEPENDENT ELEMENTS x,4x,15x,56%,209x....

/ ....... 7X+y xry f oY
N | C :
\ E 15X iy
27?00
’\ — -4X+y y
CHOOSING x=7 & y=1000
1021 |A 1014
1546 C
) ! 5 78
10
> E 2090 972 1000 1007
140 e
. -1008 ! 455 867

Clearly in the Above 209x will always be an Element divisible by 209, 56x divisible by 56 and so on. if the Above list continues long
enough negative Elements will appear such as -1008 but the diagram can be corrected.
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Below is another presentation of really the same series where y happens to be 10 instead of 1000.

< 164 59 31 24 INDEPENDENT ELEMENTS ARE
< -8 L CONFUSING SINCE NEGATIVE
\ 41 106 10 17 ELEMENTS ALTER THE PATTEI
T 53 | 123 4 THE CORRECTED DRAWING
SHOWS SEEMINGLY
o4 UNRELATED PATTERNS
SEE 31 FOR x 4x 15x 56x YET THEY
£q ! 17 ARE EXACTLY THE SAME
ABOVE 28 18
123
15x 105 £36
AN
56X 413 <
There are many other Independent Elements possible two of which are Below. It is important to remember that the series of algebraic

coefficients are what determines a series and not the pattern which we have seen Above 2 can vary greatly.

TWO MORE INDEPENDENT ELEMENTS
11X oX+2y
Xy 8x+3y
X-2Y
X-Y =
8Xx-2y
6x-3y Xty |y
THE ALGEBRA IN THESE DIAGRAMS 12x+2y 12x+3y,
VARIES SHOWING THAT THE SERIES

ARE DIFFERENT (& NOT PATTERNS OF THE SAME SERIES)
The Elements Above are always divisible by 11 and are independent of the value of y.
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INDEPENDENT
4y ELEMENTS

X+3y Y x4 X+3y

X Y1 x NOTE THE VALUE OF
y 3X'3y X+2y By

X+2y X+y Xty

x+4y THESE DIAGRAMS ARE

5x REALLY THE SAME
-3x+3y IN PRACTICE!

5x

C1.3. RECORDING INDEPENDENT ELEMENT POSITIONS

Above it is seen how confusing patterns can be in this study for Above 1 and 2 are really the same construction, yet presented differently!
As negative elements radically alter the shape it is necessary for a better reference system.
This involves always showing x and y horizontally with x assumed to be larger than y (even if is not numerically in practice), and an element x
+y beneath it.
Then additions can be made to sides 1 to 6 as shown so long as adjacent elements are always avoided.

Thus joining lines with ab Below is an addition at side 1 cd at side 2 ef at side 5 and gh at side 6 etc.

Below 2 shows independent element 4x is obtained by a code “[xy6123}.

The element x +y is always indicated by side 6 so any code will commence with “xy6...".

It is easy to mistake which side is in fact which, once the original “L” shape has changed a number of times! e.g. 4x - y drawn at side 4 in
Below 2 will point down whereas in Below 1 it would point up.
In theory it would be good to force the pattern to remain L in shape at all times but difficult in practice.

Cc a

2 {-} shows the sides added
a {2} g’(} ~side 6then 1, 2 & 3
X y4 © X | The element 4x can be coded
1 5 {1} Y by {xy6123}
X +Y {6}
b — 6 f
g h

C1.4. INDEPENDENT ELEMENTS OF 4x - HOW MANY EXIST?

| found three ways of creating independent 4x as shown below with codes {xy6123} {xy6321} and {xy6312} with element 4x appearing on
sides 3 1 and 2 respectively.

Strangely, whether these are three really different patterns is a matter of opinion.

Yes they are different, or No they are not according to the way one chooses to look at it!
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Now whichever pattern is taken with the element x shown in a fixed position, the elements shown as 4x are Independent as already
mentioned, and simply cannot possibly be anything else.

So whatever algebraic expression is given to any of the other elements 4x is always the value of the elements shown.

Unlike elements x which must remain in the positions shown , which element is called y is therefore irrelevant - nothing will change the
values 4x. Now if the elements [] are given the value y -y and -y respectively, the reader could work out the three patterns and discover them to
really be the same as the values of the elements are collectively the same.

However it is confusing, as to make the elements coefficients exactly the same it is necessary to alter the pattern in Above 2 and 3 to
eliminate the negatives by making the -y element +y by adjusting the pattern.

Once this is appreciated, it may well be considered that there is only one real occurrence of element 4x! This reasoning does explain why
all other independent elements also seem to be duplicated a number of times. For instance 5x, 6x, 11x, 15x, 19x .... are found to occur several
times in patterns which appear to be very different - but when closely examined are really strictly just one if the surrounding elements are not
assigned a fixed algebraic value for all patterns at once. It is difficult to explain this without making it seem more complicated than it actually
is!

4X
AX A : 1
X y (] X X v X y
Code {xy6123} {xy6321} {xy6312}

C1.5. INDEPENDENT ELEMENTS TO UP TO 12 DIFFERENT ELEMENTS

In experimenting with algebraic patterns of x and y type, it is possible to discover a lot of different Independent Element values. Providing
the convention shown is used, no element can ever have the independent value of 2x or 3x or 7x for example, whereas 4x 5x 6x 11x 15x 19x
and a host of larger independent elements are all found to be possible.

So far | have no quick way of indicating which values are and which are not possible, but it is true that there is no limit to the size they can
be. Values such as 1785x are found with only 22 elements - code {xy612'34234°32123°43434’56}.
Clearly where this final element occurs in a pattern it (1) must be divisible by 1785 and (2) cannot be less than 1785 (assuming x is not zero and
1785x also zero).
Thus finding a very reduced rectangle incorporating this particular pattern would be completely futile!
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C1.6. MORE TYPES OF COEFFICIENTS
Such values as x +y, 4x + 4y, 11x + 11y and the like, apply to many Rectangles. Subject to checking, | think these may completely pair up
with the Independent Elements in the last section of x, 4x, 11x etc.

C1.7. TRIAD NUMBER SERIES

This is the list of Coefficients seen earlier, namely 1, 4, 15, 56, 209, 780, 2911, 10864, 40545, 151316, 564719, 2107560, 7865521 etc... each
number being the previous one times 4 less the one before that. (e.g. 15=4x4-1)

Now in some Symmetric solutions the same Element appears top and bottom in the central part shown shaded in Below.

' B

418 1560 etc...
_L};; 2 ! 112
s

//
NB. As long as A is large, the size of it Is Irrelevant.

Now what series is obtained if we commence with 1? We get 1, 2, 8, 112, 418, 1560 etc. Now if this series are halved we have .5, 1, 4, 15, 56,
209 which (if we ignore the .5) is the Triad Series shown above!

C2. INNER AND OUTER ELEMENTS

C2.1. NUMERIC ELEMENTS
Here are some elementary and basic principles. The Reader can easily prove these to be the case.
1. A Squared-Rectangle may contain
(1) More outer than inner Elements, e.g. [9] 69 x 61 with 5 outer, and 4 inner.
or (2) The same amount of inner and outer as in [10] 111 x 98 5 inner and 5 outer. or (3) More inner than outer as in [11] 98 x 86.
2. The minimum amount of outer Elements possible is 5 with Sides index S2223, if the Invalid solution [5] 2 x 2 with $2222 is disregarded.
Thus for Order n (n > 5) there must be a minimum of 5 outer Elements and a maximum of (n - 5) inner.
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3. An inner Element must be bordered by at least four Elements.

4. The smallest Element is always bordered by four and only four other Elements.

Often but not always these four Elements form an arithmetic progression like 1516 17 18 or 4 7 11 15.

5. A corner Element must be bordered by at least three Elements.

6. A side Element must be bordered by at least 4 Elements (unless the solution is invalid).

7. The smallest Element must be an inner Element.

This can be easily shown geometrically by trying to draw otherwise ! Not illustrated.

8. The largest Element can be situated in the corner “Cornex” or on the side “Sidex” or as an inner Element “Centrex” . Centrex solutions are
comparatively rare, particularly with low orders where in fact there are none until Order.

C2.2. POSITIONS OF SMALLEST ELEMENTS

This section is concerned with inner and outer Elements and where the smallest and largest Elements are in relation to the sides index.
For instance,
In $2223 and S$2323 solutions all inner Elements are smaller than all outer ones are there other sides ratios where this is true? Looking at all
solutions to Order 11, only the following did not have all inner Elements smaller than all outer:
[9] 6 x 5 and [10] 6 x 5 (largest inner = smallest outer) and
[11] 22 x 18, 177 x 176, 185 x 168, 191 x 162, 199 x 169, 209 x 144 and 209 x 168 only 9 in the first 51 solutions. sides indexes

for these include S2224 S2225 S2233 S2234 and 2324.
SHOWING INTERNAL ELEMENTS CAN BE LARGER THAN OUTER ONES

HERE THE THREE

100 85 85 o7 67 SMALLEST ELEMENTS
43 42 + 47 [10 ARE INTERNAL
32 1 26
68 4
59 77
36 | 4041 33 |40
[11] 185 x 168 [11] 209 x 144

Above shows how an internal Element can be larger than several outer.
The larger the Order, the far more scope for internal Elements to be larger than outer ones.

C2.3. VARIOUS OBSERVATIONS
The following are given without formal proofs -
1. The smallest Element is always internal
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2. 77The 2nd smallest Element is always internal but the 3rd smallest can be external. ** check first part **

3. The largest Element can be internal in some solutions.

4.In S2223 the four largest Elements are the corners, followed by the side Element. All the smallest Elements are internal.
5. In S2323 the four largest Elements are the corners followed by the two sides. All the smallest Elements are internal.

6. In S222# the four largest Elements are corners.

11 $2333+ SOLUTIONS.
16| 1o 18 . o
Al7 Here is a theoretical diagram to
17 18 | 15 42 show that the largest element must
not be assumed to be contained in

in side of 2 elements, although this
is frequently true.

50

/41
/

C3. CORNEX SIDEX AND CENTREX

C3.1. CALCULATING A CORNEX SOLUTION
Easily done by usual calculation methods from a rough diagram where a corner is clearly the largest Element.

C3.2. CALCULATING A SIDEX SOLUTION
Take a known Cornex solution avoiding one where the largest Element is easily the largest and add a Triad at one end and recalculate.

C3.3. CALCULATING A CENTREX SOLUTION
Take a known Sidex solution a rehash the pattern and recalculate the rectangle by algebra as shown Below.
Occasionally the result is unlucky and careful choice is advised.

C3.4. SIDE ELEMENTS

Consider a solution with sides S2223 where only one side Element applies. It is easily shown that if the dimensions are m by n then the
side Element has the value 2m - 2n, a linear amount divisible by two.
Consider S2224, S2225 S2226...
Elementary algebra shows that all the side Elements must total 2m - 2n also, again a linear amount divisible by two. Next consider sides S22##
where # is 3 or greater in Below:-
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A m - A SIDE ELEMENTS TOTAL

2A - 2B ie DIVISIBLE BY 2

n-m+4A-B

\ /£
\4

<m-n+A-B

Irrespective of the number of ELEMENTS between n - A and B and m - A and B, as they total 2A — 2B together i.e. divisible by two. Also b -
a is always found to be half m - n.

If similar diagrams for sides S2##H# and S#HH with # as 3 or more are drawn using m X n as dimensions and a b ¢ and d as corner
Elements, the linear total lengths can be shown to be divisible by two also, namely
2m - 2b - 2c and 2m + 2n - 2a -2b -2¢ - 2d.

As all solutions are one of these four groups it follows that in any Squared-Rectangle - The total linear length of all side Elements is
always an even number!

3.5. CORNER ELEMENTS

The linear total of all four corner Elements may be even or odd. However in solutions S2#2# where # is 3 or greater, the four corners must
equal 2n in length and thus always be an even number.

For other sides some will be odd and the others even for any given sides index.

C3.6. INTERNAL ELEMENTS
The linear total of all internal Elements may be even or odd.
There  may be some rules as to when the total is odd and when even.

C4.RATIO

C4.1. LARGEST AND SMALLEST ELEMENTS RATIO
This is simply the largest Element in a rectangle divided by the smallest, the smallest always being an internal Element.
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B G D

123 | 129 101
LARGEST o8
6 | ELEMENT 73 A 5
177 52 7
111 B LARGEST (]
59 66 ELEMENT
HOPEFULLY
E F

ORDER 12 IS THE SMALLEST —
ORDER FOR THE LARGEST
ELEMENT ON A SIDE. E F

TO OBTAIN A CENTREX SOLUTION TAKE A SIDEX SOLUTION (AS ON LEFT). REDRAW

DIAGRAM WITH B & C INSET AND 5 NEW ELEMENTS ADDED AS SHOWN. THEN
RECALCULATE. THE LARGER BC IS IN PROPORTION TO AB & CD IN ORIGINAL, THE

BETTER THE CHANCE OF BEING SUCCESSFUL.

C4.2. HIGH RATIOS

In a rectangle such as [18] 1653 x 577 the Elements range from 1 to 315 in size.

The largest divided by the smallest is called the “ratio” and is 315.00. This is a high ratio. The ratio is surprising often an integer, but
frequently not. The higher the Order, the higher the ratio which can be found.

C4.3. LOW RATIOS
In such rectangles the smallest Element is an surprisingly high number, surprising as really low ratios Below 8 are unusual.

C4.4. LOWEST POSSIBLE RATIOS
Below 1 is a remarkable asymmetric solution with a ratio of 4.16027 which takes much to beat.
Note how the Elements tend towards three typical sizes of 400, 800 and 1200!

[10] 8 x 6 Non-zero has a ratio of 3.00 but is not a Valid solution.

Below is a remarkable solution with a Ratio of only 3.7881944!! 2182 divided by 576
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[23] 7526 x 5620

1336 1912
2096 576
2182 760 029
863| 153 [EE 1549
1405 |11 610
628 1084
1012 637,601

2159

2033 1649 1685

| discovered Below 2 with ratio exactly 4 which is 4-fold symmetric

i 706 4 : 4
1104 | 1152 [ 414 | 1065 1053 1,
359 347 1
330 F81 374 341 353 s 2 1], |8
288 1
948 1035 2
1047
906 | 19 661 694 . 1,
3
[23] 5909 x 2100 LARGEST ELEMENT 1194 [17] 11 x 11 R495.

SMALLEST 287. RATIO 4.16027 VERY LOW. RATIO 4/1=4.00!

| guess that even lower Ratios must exist but whether that solution with the very lowest ratio can be found, is difficult to predict. Even harder
would be to prove it was the lowest.

Looking at [23] 5909 x 2100 Above it is seen that the Elements neatly group into three sizes -

287 ... 413 SIZE 1 618 ... 706 SIZE 2 908 ... 1194 SIZE 3.

It is evident that the more these groups are manipulated to be as near as possible to an average size, the lower the Ratio will be. But of course
it only needs one rogue smallest Element to ruin the Ratio! Also one highest Element!
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C5. PRIME PERCENTAGES

C5.1. PRIME PERCENTAGES
How many primes occur in the Elements of a Perfect Rectangle?
An interesting Solution is [10] 65 x 47 with elements 24 19 22, 5 11 3, 25, 23 6, 17 .
Here 6 out of 10 are prime and PP = 60% Someone testing solutions to Order 16 found the next Solution which bettered this was [16] 179
163,24 139,123 43 13,7 17,11 2,9,19,1,18,80 10 out of 16, PP = 62.5% a particularly high value.
Another Solution is 235 139 151,127 12,163,125 79 31,110 48,46 14 19,211,9 5,4 20,13,10 3,23,165 16,149
13 out of 26 gives PP = 50%

C5.2. ARE THERE 100% PRIME PERCENTAGE SOLUTIONS?
Can all Elements in a Rectangle be Prime?

Most (if not all) Rectangles appear to have several instances where a single Element is bordered by 2 more.
Except for number 2 all primes are of course odd numbers and since 2 odds together give an even.
Any possible Primes only Rectangle is bound to have Element lines of 4 or more only.

It seems very unlikely that such a Rectangle exists.

C5.3. ARE THERE 0% PRIME PERCENTAGE SOLUTIONS?

Can all Elements in a Rectangle be Factorial?

Bearing in mind that only Reduced Elements are being considered, such a Rectangle cannot contain a Highest Common Factor
throughout e.g. of 2. Obviously any Elements ending with a0 2 4 5 6 or 8 are automatically factorial, but those ending with 1 3 7 or 9 might also
be factorial in some solutions.

C5.4. RANGE OF PRIME PERCENTAGES
What range of Percentages (PP = Prime Percentages) occur for all Solutions?
The following statements have been proved true (copied from Internet by me) -

C5.5. VARIOUS FACTS CONCERNING PRIMES

All numbers greater than 188 can be expressed as the arithmetic sum of at most 5 distinct squares. Below 188 there are 31 numbers which
cannot be expressed as a sum of distinct squares and only 124 and 188 require the sum of 6 distinct squares. Peabody knows - “All numbers
smaller than 100,000 can be written - but greater than 17163 as the sum of at most 16 distinct square primes” so it is conjectured that no
number will ever need to sum 17 square primes.
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C6. MIDPOINT SOLUTIONS

C6.1. MIDPOINT SOLUTIONS
An example of this straightforward but relatively rare happening is shown below.
The Midpoint is shown by a Ring half way along the top horizontal.

= 28 >~ k) >
N L, 7] o] [21156x55IMPERFECT
>
2 SMALLEST FOUND
8 11
28 9 MIDWAY SOLUTION
s
S 19
4 6
C—o
10
27 3
16
13

| have deliberately not considered Invalid Solutions with two Elements of the same size horizontally together e.g. 28 and 28 which are
common and unremarkable.

The Above Solution probably holds the small Dimensions record being only 56 across! Most solutions found tend to be Imperfect rather
than Perfect.

Where Orders are concerned [13] 120 x 109 with corner Element 60 is the smallest with 13 Elements.

There is an Order 15 116 x 109 solution and solutions for all higher Orders are possible.

By removing the largest Element and putting the remaining Elements in twice as Above2 another solution may always be found - albeit
Symmetric only. The resulting Imperfect Solution is of Order [2 x 0 + 2].

C7. BORDERS

C7.1. ADJACENT BORDERS
Adjacent borders is a term used in this section and shown Below various groupings into 3 4 5.. form part of a solution either horizontally
or vertically. Each line is the border of at least three Elements.
1. No solution apart from the Invalid [5] 2 x 2 exists entirely of adjacent borders of three.
2. No solution exists entirely of adjacent borders of four.
Below 1 shows an attempt to achieve this results in increasing chaos.
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12 1 27 123 |1

w

D

SN

|

g

o] >
N

¢
|

N

B

ADJACENT BORDERS OF 3,4 & 5 4

C8. INNER ELEMENT BLOCKS

C8.1. INNER ELEMENT BLOCKS
In many rectangles it is found that all the inner Elements join together as a single block.

Ignoring Invalid solutions, there are just 32 solutions otherwise up to Order 13. Most of these contain 2 blocks with a Triad or Pentad
ending, but one [13] 633 x 295 has three.

10 [130x79 c2 |a1 52324 13 123x80 |4 af 52334
11 209 x 127 d3 |a1 52324 13 140x92 |d3 b2 52334
12 |29x16sym |c2 |[c2 S2424 13 152 x100 |e3 c2 52334
12 |46x26sym |c2 |[c2 52325 13 195x141 |4 af 52333
12 |92 x 60 f3 |al 52334 13 211x144 |4 af 52334
12 | 353 x 207 f3 |at 52325 13 322x1711 |4 af 52424
12 | 353 x 232 c2 |b2 52334 13 985x343 |4 af 52325
12 | 353 x 240 f3 |at 52334 13 985x358 |5 af 52324
12 | 353 x 255 4 af 52333 13 993 x 335 |d3 c2 52325
12 | 368 x 225 4 af 52324 13 993 x 342 |4 af 52325
12 | 377 x 231 4 af 52324 13 993x392 |4 af 52334
12 | 386 x 207 gd |af S2424 13 608 x 335 |d3 c2 52424
13 |72x 44 5 af 52324 13 608 x 377 |5 af 52324
13 |76 x 44 4 af 52325 13 633x295 |21 af 52425
13 |[112x75a 4 af 52334 13 633x382 |5 af 52324
13 [112x 85 4 af 52343 13 663 x 352 |4 af S2424
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8.2. ENDINGS FOR BLOCKS
The coding Above denote different endings which are shown Below

C9. RECORD SIZE ELEMENTS

This section is concerned with the largest and smallest Elements found in rectangles.
The Elements considered here are the full size ones, not reduced ones.
What ranges of larger and what ranges of smallest Elements are possible per Order?
Do the ranges vary much for Invalid, Imperfect and Perfect solutions? C9.5
How does the minimum amount of Unknowns affect these ranges? C9.6
Does the elongation of rectangles have a bearing on the values? C9.7
Are there formulae or rules to be found connecting the values in different orders?
Are there other features that radically affect the orders?
Do the results found give definite rules, general tendencies or are they just coincidental?
As values which are primes can only occur where the Reduction Index is 1 and all others must be factorial, it is not surprising that
factorial numbers will occur more often than primes and evens more often than odds.
Many rules found are generalized rules relating to tendencies rather than absolute rules relating to every instance.
For the time being no reference is made to the dimensions of actual solutions containing the record sizes, but it must be stated that
records often shared by several solutions rather than just one.
These solutions may be differing types e.g. Invalid and Valid, Perfect and Imperfect etc..

C9.1. ABBREVIATIONS LLE SSE...

Clearly a given solution has a largest and a smallest Element (even if more than one exist). But within a LL solutions for a given Order
there are a largest and a smallest of such largest Element and ditto for smallest Element, a little more confusing.
“LLE10” means the *largest #largest Element actually possible for Order 10.

“SLE11” means the *smallest #largest Element for Order 11.

“LSE12” means the *largest #smallest Element for Order 12.

“SSE13” means the *smallest #smallest Element for Order 13.

“LLE147?” means the largest# largest Element found so far using a computer by me.

Some are believed to be the record possible, but for many better values are undoubtedly possible.

Note the question mark used where the best value is unconfirmed.
note carefully that the words marked * relate to all solutions for an Order and # to individual solutions.

C9.2. THE RANGES FOR ORDERS TO 13 CALLED “SLE” and “LLE”
From my list of rectangles which excludes duds and Compound solutions but includes Invalid and adjacent
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solutions the following ranges for smallest and largest larger found -
Order 7 12 to 12 Order 8 20 to 20 Order 9 30 to 36 Order 10 44 to 60
Order 11 56 to 105 Order 12 120 to 180 Order 13 164 to 336
SLE13 =164 and LLE13 = 336, quite a considerable range whereas SLE7 and LLE7 have no range at all.
It is easy to see the range definitely widens as the orders increase - this is always true for any given Order.
The fact that all values shown are evens is purely coincidental! No rule here.
In view that there are so few solutions for low orders it is not surprising that values found are less reliable when looking for rules, than in
higher orders.
Sometimes values do not even exist for low orders - as in xyz for Order 9 and Imperfect solutions for Order 10 and 11.

C9.3. SMALLEST SMALLEST ELEMENT - CALLED “SSE”

It was seen elsewhere that smallest Elements are always internal ones.
Since all Orders have Reduction 1 solutions containing an Element 1, clearly the values for Valid rectangles are simply 1 for any given Order.
However, in Invalid solutions many of which contain zeros, 0 is clearly the SSE is 0 for any given Order.

C9.4. LARGEST SMALLEST ELEMENTS - CALLED “LSE”

These are less easily found and will occur where the largest/smallest Element ratio is very low.

As such solutions are relatively very few indeed, it is difficult to find reliable values even by computer where millions or trillions of
solutions exist for the Order.
The actual values for orders 5to 13 are - [5] 0 [7] 1 [8] 0 [9] 5 [10] 7 [11] 16 (invalid) and 13 (valid) [12] 32 (invalid) 26 (valid) [13] 39 (invalid) and
46 (valid).

Only orders 5 and 8 have LSE of 0 and higher orders have much larger LSE’s than these.

Excepting orders 5,7 and 8 the series definitely always increases as the Order increases.

C9.5. RECORD ELEMENTS VERSUS INVALID, IMPERFECT and PERFECT
There is some variation in record size Elements where Invalid, Imperfect and Perfect solutions are considered.

C9.6. RECORD ELEMENTS VERSUS x, xy, xyz ... SOLUTIONS

| was amazed to discover how much the amount of minimum Unknowns does affect record sizes, as the differences in the low orders are
not that remarkable, and Orders 7 to 9 have no xyz solutions anyway.

But in higher orders differences are stark, e.g. LLE287? = 818451 for xy but LLE28? = 1208790 for xyz!

In this case any Elements 830000+ must have 3 or 4 Unknowns.
Subject to checking xyza and xyzab solutions probably have a still greater LLE.
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In the case of x solutions - all of which are duds lle’s are considerably lower than xy ones.
SMALLEST LARGEST ELEMENTS _ LARGEST LARGEST ELEMENTS

1641164 164 168 324
164 164 164 |
324
ORDER 13
[13] 615 x 328 xyz [13] 633 x 295xy  [13] 576 X 576 Xyz [13] 576 x 512 R32 xy
INVALID PERFECT INVALID INVALID

C9.7. RECORD ELEMENTS VERSUS DEGREE OF ELONGATION

As it would not be expected for long thin rectangles (very elongated) to have the largest possible Element for an Order, elongation has
clearly a large influence on record size Elements.

Generally, the less elongated the solution the larger the largest Element tends to be, and the more elongated, the smaller the largest
Element tends to be. Having said this, some 70% elongated solutions have a larger largest Element than a 95% one. Extremely elongated
solutions on the other hand will tend to have very small largest Elements, and probably contain the record sizes.

C9.8 LLE FOR xy and xyz SOLUTIONS COMPARED
Below is a table of largest Elements found so far for orders 7 to 30.
Note that better statistics actually exist for the larger orders than shown ( i.e. higher):-

Xy solutions (others possible) Order xyz solutions (others possible)
24 x 21 Invalid only possible 12 7 none possible

40 x 35 Invalid only possible 20 8 none possible

69 x 61 36 9 none possible

105 x 104 60 10 48 128 x 96 Invalid only possible
199 x 169 105 11 112 194 x 192

318 x 315180 12 194 338 x 334

576 x 512 Imperfect 324 13 336 576 x 576

1017 x 795 534 14 568 1031 x 1016...

1808 x 158 920 15 1,004 1732 x 1726

2778 x 2671 1.514 16 1,733 3034 x 2867

4711 x 4571 2,590 17 3,068 5232 x 5216

8217 x 7555 4.420 18 5,315 9123 x 9061
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14193 x 12033 7,431 19 9,319 16321 x 15484

24009 x 22650 12,687 20 15,825 27278 x 25393

36882 x 36459 20,910 21 27,416 46704 x 46451..
67680x56601 35,340 22 48,988 84635 x 80404
116193x98372 61,021 23 83,988 71657 x 63308
192546x191775 104,754 24 144,025 255489 x 252640
157627x133133 171,106 25 256,925 477863 x 438834
990817x515813 295,515 26 432,060 777566 x 760156
888591x867628 496,939 27 740,441 1307443 x 1268401
1512465x1245856 818,451 28 1,208,790 2104948 x 1974349
2590810x2574649 1,440,090 29 2,230,926 3957264 x 3941086
4145575x4100986 2,287,622 30 3,721,373 6687728 x 5876048

In Above, it is interesting to see that each amount is very roughly 3 times that of that two before, e.g. 20910 x 3= 62730
against 6102. Or each amount roughly square root 3 or 1.732... times that of the previous.

Also each is usually a bit more than the total of the previous two e.g. 1733 + 3068 = 5011 against 5315.
The gap widens in favour of xyz solutions as the Order increases - in Order 30 3721373 is 67% higher!

C10. CROSSOVERS

C10. CROSSOVER POINTS

Referred to as a “CROSS” on the Internet these are described briefly in Section A, a Crossover is a comparatively unusual occurrence
when compared with all solutions within a range. It appears at first sight to occur as a sheer coincidence.
Also like so many aspects of Squared-Rectangles it seems to be a difficult feature to find good explanations for, and this is not helped by that
Theory suggests one thing and Practice something different!

C10.1. TYPES OF SOLUTIONS CONTAINING CROSSOVERS

Crossovers occur from worthless solutions to the best ones. Starting with the worst -
1. Dud Solutions always contain at least one Crossover, e.g. [4] 2 x 2 having a box of four elements of 1.
In calculating this category of Rectangles by algebra using a roughly drawn diagram, a Crossover may be clearly in the diagram (as Below 1)
or seen to exist on further inspection (as Below 2). But even where a Crossover is not so obvious (Below 3) the Crossover may be seen as
occurring by design and not by coincidence.

105




106

2nd & 3rd Diagrams are not drawn deliberately with
A A A B Crossovers however with a little reasoning it will
C D be seen that at A B C & D the lines more logically
will join at single points and are CROSSOVERS
Drawn with a

Crossover present, Not drawn with deliberate Crossovers.

2. Zero Solutions usually have no Crossovers in theory, but in practice may have one for every Zero. If the Zero Element is not drawn at all, or
indicated by a dot only, a Crossover Point always occurs in practice (though not in theory).

3. Some Non-zero Solutions also have Crossovers in practice (but not in theory).

A symmetric pattern as below indicates that the lines at “ O “ actually Cross in reality.

4 4
)
= 1] 1

3 > | 3

1N
N
I

)

Crossovers will be indicated with " O "
4. Normal Perfect or Imperfect Solutions which contain Crossovers are a much more interesting set and the term “CROSSOVER” from now on

should be regarded as applying to these alone.

C10.2. CROSSOVERS WHICH ARE APPARENTLY COINCIDENTAL

Below a good Crossover example is shown - [20] 128 x 115. If we had randomly chosen Pattern A for calculating a solution by algebra,
then we would find [20] 128 x 115 and that by coincidence * that the piece of line at C disappears, being of zero length. But suppose Pattern B
had been randomly chosen! We would again find that the piece of line D does not exist either in reality! However the solution is [20] 128 x 115 -
not a Twin, but the same solution.
* It still has to be found whether this is coincidence or not.
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56
16 | 13 N N
18 | 11 J15] 5
43 714 9
25 28 32
[20] 128 x 115 RI 172 Imperfect Rough Pattern A Rough Pattern B

CROSSOVER AT O

C10.3. THE PARADOX OF ONE PATTERN OR TWO!
Readers will say that Patterns A and B are clearly different, and | agree. But the resulting Solutions are the SAME!
For ages | believed that different Patterns must always give different Solutions.
Note that many badly drawn patterns will change shape when an internal element or more proves to be negative -
in such cases the patterns are beyond doubt the same - but this is different!
Of course when drawing out Patterns, these are theoretical Patterns in which we assume the following:-
1. That all squares drawn will have positive values.
2. That none will be Zero.
3. No two horizontal lines will effectively hecome one and likewise-
4. No two vertical lines will effectively be one.
These are usually true, but any or all of these can prove to be wrong!

C10.4. CROSSOVERS AND REDUCTION INDEXES

Could a single Crossover solution have two differing R.l.” s and two lots of full dimensions at the same time, coinciding with the two
patterns - horizontal and vertical?

Are most or all Crossover Solutions highly reduced rectangles? If so do the Full Dimensions always vary?

Much to be done. 1. Are there real reasons why they occur?
2. Can complexities vary with the 2 patterns - very likely yes!
3. Are all Crossover Solutions Imperfect? NO!!

C10.5. WHAT CAUSES CROSSOVERS TO OCCUR?
This seemed very puzzling until | realized a simple fact that
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An extra Element of zero size can always be drawn at the point of Crossover thus increasing the Order by one!
Thus [20] 128 x 115 Above can be made into Zero solution [21] 128 x 115 Below. The Zero Element can always can be put in one of two places
as shown. No problem in this. Clearly the Reduction Index for the bigger Order will be greater.

72

/
/

11

15

72

16

v

0

11

15

—

e
| s~
= e

/ [21] 128 x I15 Zero Invalid
So once suitable Zero Solutions have been found (most being unsuitable) a Crossover Point automatically occurs for the Order below,
once the Zero has been removed, provided that the resulting solution is Valid.

In many instances Duds occur when the Zero is removed. Occasionally a Non-simple solution arises (see 2 below).

C10.6. LIST OF GOOD CROSSOVER SOLUTIONS FOUND SO FAR

1.[19] 60 x 42 r270 imperfect s2324 xyz

2.[19] 118 x 117 r116 imperfect s2234 xyz is Compound containing [9] 33 x 32!
3.[20] 128 x 115 r172 imperfect s2234 xyz

4.[20] 149 x 146 r147 imperfect s2233 xyz

C10.7. ZERO SOLUTIONS FOR GOOD CROSSOVERS

To establish on inspection whether a known Zero solution can be changed into a Good Crossover solution, look at the four Elements
bordering the Zero. If the same number occurs in horizontal pairs or vertical pairs as Below 1 and 2, Dud solutions

will occur, but anything else is OK, and these include the same number on opposite diagonals (either once or twice).

A A denote repeated numbers, whereas A B C D are deemed all different numbers.

A A Al - Al B Al B Al B Al B
B 0 0 0
- - A |- B [A C A B C C D

Acceptable patterns for Good Crossovers.

No Good - give DUDS

C11. ELEMENT SIZES DETERMINED BY DIMENSION SIZES
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11.1

The following are mentioned in Section E in connection with Links, but the purpose of this Section is to concentrate on individual
Elements whose values are fixed by the actual Dimensions of the Rectangle.

ELEMENTS ABCD

can be expressed in

B of the Dimensions ir

A D

_ as shown.
C

A =2m - 2n C=1/11n or 1/11m*
* if placed horizontally. B = 74n or ¥am* D = 4/11n or 4/11m*

Suppose in Above 1 the Dimensions were 69 x 61. Using m = 69 and n = 61 it is evident that A is fixed at 16.

C12. AREA RELATIONSHIPS - SEE SECTION R

C12.1 AREA RELATIONSHIPS
Below a set of Elements has been put together starting with 5 and 1
(any combination could have been used).
5and 1 have an Areaof 25 +1 =26 =26 x 1.
By adding at sides 3 & 6, 4 and 6 have an area of 16 + 36 = 52 = 26 x 2.
By adding at sides 1 & 4, 11 and 3 have an area of 9 + 121 =130 = 26 x 5.
By adding at sides 3 & 6, 7 and 17 have an area of 49 + 289 = 338 = 26 x 13.
By adding at sides 1 & 4, 28 and 10 have an area of 784 + 100 = 884 = 26 x 34.

The coefficients of 26 are alternate numbers in the Fibonacci series, 1, 2, 5, 13, 34, etc. provided we add alternately at sides 3 & 6 and 1 & 4!

)
4
Y A
1 e
R
0] { 4B
/’/ 7D
SHOWING SIDES (30
CODES1TO®G6 11C [
28 6B
= 10E

17D
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The Reciprocal arrangement applies no matter what pair of numbers we commence with, e.g. If we started with 6 and 7, 36 + 49 = 85 and
the B pairs twice this, the C pairs 5 times this, the D pairs 13 times this ...
As this subject links with Reciprocal Pairs, it is dealt with fully in Section R of this book, which see.

C13. HORIZONTAL AND VERTICAL LINES (AND LEVELS)

(The following may be better placed elsewhere in the text)

C13.1. QUANTITY OF HORIZONTAL LINES IN A SOLUTION

The first two Elements in an xy Rectangle construction produce three horizontal and three vertical lines as Below.

Now when Elements are added at sides 1 3 or 5 it is evident that one new vertical line is created (the two horizontal lines already exist).
Likewise at 2 4 or 6 one new horizontal line is created e.g. as in side 6 Below.
(The two vertical lines already exist).

However in the final Element at Side 3 (or side 4 if preferred) the bordering lines are already in existence.

So in an Order 9 solution we may expect there to be 12 Horizontal and Vertical lines altogether made up as follows:
1st and 2nd Elements - six. 3rd one. 4th one. 5th one. 6th one. 7th one. 8th one 9th nil. This is proved correct. So -
IN AN ORDER [O] SOLUTION THE TOTAL QUANTITY OF LINES (VERTICAL AND HORIZONTAL) IS [O + 3]

But what about xyz (not detached) Solutions? It is found that the first three Elements (x, y, z) give 8 lines and each subsequent Element 1
more except the last two. Total O + 3 as before. Xyz (detached) Solutions give 4 lines for the first two Elements (x and y), 1 for each

subsequent Element (except last two) and two when z is introduced. Total O + 3 again!
\L J/ ¢ Three Vertical Lines

< Three
// = H(?FIZOH'[BJ
1 —__ Lines

Another Horiz Line
| = after adding at Side 6

~
Inspection shows that there in any Solution whatever the total Horizontal and Vertical Lines is always the Order plus three, regardless of
how many algebraic Unknowns are needed for the Solution.
Of course 4 of these lines (2 Horizontal and 2 Vertical) form the borders so there are always O - 1 internal lines in any solution. However
the proportions of Horizontal to Vertical ones varies of course.
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C13.2. UNBROKEN AND BROKEN LINES CALLED SLIDES

Many of the smaller Solutions contain a Broken Line or more. Many Symmetric Solutions have them - Below lines AB and CD are broken

though on the same horizontal level whilst EF etc. are Unbroken.

Although this Solution [12] 46 x 26 contain 7 Horizontal Lines, it has only 5 Horizontal Levels.

Showing 2
15 16 15 Horizontal
o i
£ Broken Lines or SLIDES
413 <
11 oDy
7110
31
39 42
3 11 20
<stite 5
36 14 15 33
19 24

31
39 42
3 11| 20
(whene st dhe)
33 S| 24

19

[13] 112 x 75 (1) & (2) with Identical Elements
Above 1 shows a Broken Line AB and Above 2 an Unbroken Line or SLIDE AB.

The first has 8 vertical and 8 horizontal lines = 16 the second 9 vertical and 7 horizontal lines = 16.
Where Broken Line solutions exist there is sometimes an associated solution which has a related but Unbroken Line.
Twin Solutions with Identical Elements often follow this pattern of Unbroken and Broken.

C13.3. ROWS AND COLUMNS (COMPARED WITH HORIZONTALS & VERTICALS)

In the Grid System of recording Elements by rows and columns it is clear that the number of rows r, and number of columns c is one less
in each case than the horizontals and verticals. h+v=0+3 butr+c =0+ 1 (N.B. Slides ignored)

C13.4 VARIATIONS PER ORDER IN QUANTITIES OF ROWS & COLUMNS

The three Order 9 solutions each contain 5 rows and 5 columns of Elements. (This is according to the convention of showing Solutions

horizontally).

Most of the Order 11’s have 6 rows and 6 columns. But 185 x 151 and 209 x 127 have 5 rows and 7 columns - not really surprising since these

are so elongated.
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In even Orders the rows and columns always vary, their sum being an odd number. But in Order 10, 5 rows and 6 columns is more frequent
than 6 and 5. In Order 12 we find most have 6 and 7, the remainder having 7 and 6 (rows & columns).

In the case of larger Orders the variations are much more than just 2.

e.g. Order 32 has a maximum of 18 rows but may have only 14 rows in very elongated solutions. Order 33 has also a maximum of 18 rows.
FOR ODD ORDERS THE MAXIMUM NO OF ROWS POSSIBLE IS (O+3) /2

FOR EVEN ORDERS THE MAXIMUM NO OF ROWS POSSIBLE IS (O+4) /2

C14. DISTRIBUTIONS AND TOTALS OF ODD ELEMENTS see section S

C14.1. TRIAL & ERROR ENDS

The following may seem pointless to the Reader but its use will be explained later!

In Below 1, two random numbers have been selected 17 & 14 and other Elements added. At any stage of construction three lines exist
which will be called “A B and C” of which B will sometimes be regarded as negative (turning to left) otherwise positive. At the point of the
theoretic trial solution Below A =12, B=-4 and C = 19. Let us suppose some remaining pattern gives rise to an actual Solution. If true then the
Ratio 12:-4:19 will be the key. Then if another random pattern gave rise to say 84:-28 and 133 (which has the same Ratio 12:-4:19) then the
pattern to the right will fit even though it is often found that in order to remove possible fractions Up-rating of part or both parts may be
necessary.

Note that in this Section the importance is not actual value of the numbers - but the actual fixed RATIO of numbers.

17 | 12 Jéklz /%\3 For this DIAD ending to
4 5 apply,
8 o C| Amustequal B+C
14| 11 20 (still true if B is negative)

C14.2. THE SIMPLEST TRIAL & ERROR END PATTERN RATIO - DIAD

Look at Above 2 showing a theoretic Diad End with any values we choose, say 23 and 20. Now if our trial & error pattern (from the left) just
happened to end with A =23, B =3 and C = 20 then a Diad ending will give a proper rectangle. It is readily seen that the two Elements must be
A in value at top) and C in value at bottom - also that A = B + C. This relationship will be termed the RATIO CODE. Without attempting to give
reasons - two important facts are found:
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1. No matter what Ending (i.e. Pattern of Elements) is drawn on the right hand side, each and every individual Element may be expressed in
coefficients of A B and C alone.

2. There is always a RATIO CODE which is also in terms of A B and C alone . This RATIO is absolutely fixed. In Above 2 thisisA=B +
C. (Note that although the Ratio 3A = 3B + 3C also stands true here, it is sensible to cancel down the Ratio as far as possible). From now on
dummy Element Numbers will be omitted since they could be virtually any set of numbers.

C15.1. RATIO CODE FOR TRIAD

Studying Below it is easy to see the value of the Elements in terms of A B & C. At the double line an equation has been formed from which
is found the RATIO CODE of A =3B + C. Thus say in a trial diagram we arrive at A=21 B =2 & C = 15 this Ratio is found to agree which means
that a Triad end is possible. In both the DIAD & TRIAD patterns it is never necessary to UP-RATE all the left hand Elements by some integer.
But in other patterns this frequently applies - though not always.

At this line B+C (at left)
A -B__+— must equal A-2B (at right)
_B[ SoA=3B+C
A -2B
(or BHC)

C15.2. IS THERE ANY POINT IN CALCULATING RATIO CODES?

There would be not much point in calculating these - except for the purpose of Trial & Error Computer programs!

These programs are based on luck so in theory are not worth while. However in practice they do work well if and when a great number of
ending options are tried. Also in working out one numbered Element at a time and testing each ending in turn the possibility of finding
Rectangles by chance is again greatly improved.

C15.3. MORE PROFITABLE PATTERNS FOR RATIO CODES

Although Ratio Codes for Diad, Triad, Doubles & Triples can be successfully, they have a tendency to produce Symmetric solutions. Also
the Solutions are restricted to “ENZ” solutions (mentioned elsewhere). So it is better to use patterns which do not have a single Element at A
or at B or at C. The simplest of these is the Pentad Ending with five Elements followed by a few with six Elements.

C15.4. TWO PATTERNS WITH THE SAME RATIO CODE
Both the patterns Below happen to have the same Ratio Codes of 5A = 7B + 3C! But the first has 7 Elements and the second 8. The second
is obtained by adding an Element at XY (called Z here). Z happens to be three-fifths of XY as explained below.
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In working the Algebra out it is found that AB has to one-third of XY and CD must be one-fifth of Element Z (i.e. 155 is 1/3 of 465 and 93 is
115 of 465). In the dummy Element numbers shown (up-rated to make A B C 240 75 and 225 in each case) those in the first are divisible by 5
and those in the second by 3. This means that Z has to be three-fifths of XY in order to fit.

A
125 156 135
1 » 135 0 3 .,
10
115 a4 114
ap 145 9Fi§§::
2 | ¥ 225 4 =
185 216
B D

So these patterns are interchangeable - subject to various Up-rating and recalculation!

C15.5 RATIO CODES SERIES FOUND BY ADDING CLAWS TO SYMMETRIC PATTERNS

The Ratio Code for the Diad ending is A =B + C. The Code for Diad plus a Claw i.e. Pentad is A = 2B +C and the Code for Octad (i.e.
Pentad plus a claw) is A =3B + C. Yes there is a definite series found and the next (Undecad) has the Code
A =4B + C and if a Claw is put round this (Fourteen-add) A = 5B + C and so on . .. ! Knowing this removes much algebra.

4 <<A=5B+C

3 e AZAB + O DIAD PLUS B
2 <<A=3B+C

CLAWS
1 <<A=2B+C
<<A=B +C A

This has a Ratio
Code of 3A=5B +3C

1 The CLAWS are numbered N D
2 1234...

4 C

Lets look at the Double pattern and add Claws to it - the Series runs 4A = 3B +4C then 4A= 7B + 4C then 4A =11B + 4C and
4A = 15B + 4C and clearly the coefficient of B rises by four each time!

The Triple pattern has a series of 15A =11B + 15C, 15A = 26B + 15C, 15A =41B + 15C, 15A = 56B + 15C a rise of 15B each time.

The Quadruple pattern starts with 56A = 41B + 56C with increments up of 56B each time.

Now look at Above 2 a more complicated design of 8 Elements. This pattern has a series of 3A = 5B + 3C, 3A = 8B + 3C (with one claw
added), 3A =11B + 3C (with 2 claws added), 3A = 14B + 3C etc. It is interesting to note that if the Element at A is omitted the same Codes apply.
For instance adding Elements at B & C only give the formula 3A = 8B + 3C. If an Element D is added in-between the bold line the Ratio Code is
unaltered at 3A = 5B + 3C. If a Claw is added or just Elements at B and C only, the Ratio Code is 3A = 8B + 3C the same as before. However it is
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important to realize that although the Codes are the same the individual Elements require total recalculation. Their coefficients in terms of A B
& C will vary.

What if the pattern commences with an ‘Added’ Element or contains one somewhere in the pattern e.g. any pattern ending with a Triad?
Well it was mentioned elsewhere that an Added Element does NOT change a symmetric pattern into an asymmetric one. It remains Symmetric.
See C19.10.

C15.6. SYMMETRIC PATTERNS WITH FOURS ADDED
We have seen the effect on Ratio Codes when CLAWS are added.
What happens if FOURS are added? These are sets of Elements added - four at a time - as shown Below -

- x Adding a second

9 ‘\ FOUR

/ Adding a first FOUR
1R
v T Some pattern e.g. Pentad

The Code for a Pentad is A=2B + C.
When 1 Four is added the code becomes 3A = 5B + 3C. With 2 Fours the Code is 8A =13B +8C
A simple relationship is soon found to work in all cases -
1. For the new coefficient of A add the present coefficients of A& Bi.e. 1+2=3,3 + 5=8 and so on.
2. Double the present coefficient of B and add the coefficient of A, i.e.2*2+1=5,5*2 +3 =13, and so on.
3. The coefficient of C is always that of A.

C15.7. SYMMETRIC PATTERNS WITH INITIAL PLUS ADDED

For a Diad the Code is A=B + C and a Triad A =3B + C. In adding a PLUS the Codes change as follows:
1. Coefficients of both A and C stay the same.
2. The Coefficient of B increases by 2 times A.i.e.by1*2.1+2=3

C15.8. SYMMETRIC PATTERNS WHEN MIDDLE ELEMENTS ARE ADDED
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MIDDLE Elements are those which can be added one at a time without spoiling the symmetry, and cross the half way down position.
Whereas some patterns do not have one, others have several. In Below 2 an Element can be inserted at vertical line AB. Or a Element can be
inserted at the horizontal line CD. Or both AB and CD added together.

For all such combinations the Ratio Code simply stays the same! However it is again stressed that the individual Elements do change &
require total recalculation.

ADDING OF 'MIDDLE!
A ELEMENTS AT AB OR CD
C D ORBOTHAB & CD DOES
NOT ALTER THE
B RATIO CODE!

The last four sections mean that the finding of Ratio Codes is fairly easy. Also it is surprising how often different patterns have the same
Code. Refer to Section E LINKS which uses this fact.

C15.09. FURTHER INTERESTING PATTERNS

46 47 The right hand Ratio Code
( §|de of this pattern 3A = 5B + 3C
28 | 18] 17} 30 Itz:g‘gel\cl:-{g?a%u;ing . Right hand
12| 22 |13 an Octad or Triad instead side a DIAD
IS mentioned below.
34 43 Ratio Code 4A=7B + 7C

Bearing in mind the Codes for the series for Diads, Pentads, Octads etc. on the one hand and the Code for the Above pattern but with a
Diad on the right, | was able by guesswork to obtain the Ratio Code of 4A = 7B + 4C! On inserting some dummy numbers (see Above) this
formula agreed. Now what happens when Claws are added? As always only the coefficient of B changes. The series then runs 4A =7B + 4C,
4A =11B + 4C, 4A = 15B +4C ... by increments of 4B.

Compare this with the Diad ending which has the series 3A =5B + 3C,3A=9B + 3C, 3A=13B + 3C...

Subject to checking it appears that an Octad ending with the above pattern will give the Code 5A = 9B + 5C etc.
i.e. 3A = 5B + 3C for Pattern plus Diad, 4A = 7B + 4C for Pentad, 5A = 9B +5C for Octad, 6A = 11B + 6C for Undecad and so on - Now as Octads
can be replaced by a Triad 5A = 9B +5C will also apply to this (however the Elements vary totally).

So these patterns are interchangeable - subject to various Up-rating and recalculation!
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C15.10. RATIO CODES FOR ASYMMETRIC PATTERNS
The writer hoped that only the coefficient of B would alter if other patterns not of a symmetric nature have claws added to it. No such luck!
Take the pattern below which has a Ratio Code of 4A =3B + C.

‘ C

B

With one claw * added the Code is 4A = 8B + 3C, with two 41A = 130B +38C and three 149A = 633B + 146C. If there is a relationship it is
hard to find even with the inconvenience of having to calculate four types. Also the coefficients are terribly large compared to a Symmetric
design with similar numbers of Elements!

*i.e. Elements added at AB & C - again if B & C only are added and Claws added to this thereafter the same Codes apply but the individual
Elements require total recalculation.

C16.1. IMPERFECT SOLUTIONS HAVING A SINGLE DUPLICATED ELEMENT

There are many examples of Imperfect Solutions where only one Element repeats, for example 9 in Above in
[15] 107 x 79, nothing surprising about that. However, the Writer was surprised to find many Imperfect solutions (but not all) where the
duplicated Elements happen to be either left and right of a vertical line, or top and bottom of a horizontal line. Often the line borders a more
than average number of Elements - 17 14 9 14 & 9 44 in Above.

In Above, clearly 44 =17 + 14 + 13 though of course 44 does not directly border 17 14 & 13.
But there are many exceptions to this rule - typical of this study! Some of these follow other patterns. Complete SR’s will not shown for these
but the reader is assured the theory is sound.

SOME SINGLE DUPLICATED
B ELEMENTS

OCCUR WITH ONE
ELEMENT INBETWEEN

B

PATTERN 2 PATTERN 3

Note that these patterns may be rotated, and the relative sizes are irrelevant as they vary wildly in size & proportion. Thus the only
duplicated Element may be situated as A & A, or as B & B (or similar).
At the present time the Writer has no explanation for these Patterns occurring.
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C16.2. PATTERN 1
| have discovered that Pattern 1 occurs in some Imperfect Solutions where the Reduced Dimensions are both divisible by 4 e.g. 752 x 588.
Where they do occur, it is found that the duplicated Elements occur every third Element in a group of 6 - as illustrated twice.

\ <1 <2 |  Three above &
| 2 > 1> ! three below
< 1 Two above &

’ four below
'>2 U >1>2

The line shown (which could also be vertical) has 6 Elements bordering it. If the Element shown as a box is Imperfect count to three in
circular motion from it - doesn’t matter whether left or right - and the 3rd Element will be the same size!

| have seen cases where the above is true with five Elements e.g. [16] 689 x 411, the reason for this is that neither 689 nor 411 are divisible
by 4.

C17.1. FEATURES OF FORMULA LISTING
There are a number of rules which apply to Bouwkamp listing as modified by me, i.e. arranged in layers with + denoting corner Elements
and - denoting Side Elements.
A. First Line. ++ +-+ +--+ +---% +----+ gfC.
First and last Element +_ with any in-between -_.
At least 2 Elements - no upper limit.
Largest Element is never last in the line.
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXX XXX XXX XXX XXX XXX XXXXXXXXX
IN LATER LINES EXCEPT THE LAST - At least one of the Elements is ._ Unless all Elements are ._ no line may contain more than one +_or -_
~. is possible where the - Element occurs on the bottom, line, usually 3rd or 4th Line from the end. But .+. is never possible.
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXX XXX XXX XXX XXX XX XXX XXX XXX XXX XXX XXXXX
B. Second Line.
First Elementis ._
All Elements are . where First Line more than ++ and smallest Element - .
Otherwise Last Element is +_or -_ and all others ._
C. Line two from last.
Maximum three Elements
D. Line one from last..-+-. +. .- .+
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Maximum 2 Elements.

Is either 1 Element, + or -,

or 2 Elements one of which is ._

E. Last Line. - or +

There is one Element only, sometimes +_ and sometimes -_, never “.-”.

C18. VARIBLOCKS
Although this section involves Elements, it also involves Twin Rectangles and is therefore dealt with under Section H12 which see.
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D. CALCULATING BY ALGEBRA

D1. xy SOLUTIONS

(See also the counterpart procedure for calculating from Smith Diagrams).
The purpose here is to show how the values are calculated for a squared- rectangle chosen at random. many rectangles will require a
greater amount of Unknowns than two, in fact there is no greatest possible number.
Below is calculated with x and y only. Though wordy to describe, it is not that difficult.
1. Draw a rough sketch of a rectangle divided into rectangles as though badly drawn squares.
2. Choose two inner adjacent Elements for x and y. Often a good choice is two of the smallest internal Elements, but a little practice and
experimenting is needed for good choices, and no easy fixed rules can be given.
Always keep the Unknowns down to the minimum necessary.
3. Write down the values of adjoining Elements in terms of x and y until all Elements are valued (or as far as possible),
remember the dimension of each Element works both horizontally and vertically.
4. There is a vertical or horizontal line to be found where an equation can be formed. Below in AB it shows -3x + 14y (top)
must equal 3x - 3y plus 3x +y. -3x + 14y = 6x - 2y 16y = 9x which is satisfied by putting x =16 and y = 9.
5. Using a similar Order to the algebra, the numbers are worked out one by one. 6. check the verticals and horizontals that
they agree. In Below, 99 + 78 does equal 77 + 34 + 25 + 41.
1. Calculate the Order and dimensions, to conclude. Below is [10] 177 x 176.

77
<3x o 2l 5
N N 43
=T\ x+3y - 5 16
L |
2X + By \V/ZX . —
X + 2y [10] 177 x 176 16
X +y 43
MR

NOTE THE TRAIL LINE SHOWING THE CALCULATION OF NUMBERS ROUTE

Sometimes a negative internal Element may occur in the calculation. See Above 3. In such cases a Simple adjustment of the pattern can

be made to correct. It is not such a problem as it first appears. Compare Above 2.
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In the typical equation of x and y we have something like 5x = 8y or -4x = 16y etc. where x is the coefficient of y and y the
coefficient of x. That is x = 8; y = 5 and x = 16;y=-4 in the Above equations.

In the case of x =16 and y = -4, y can be regarded as +4 with the pattern adjusted and so negatives can be disregarded. here both can be
divided by 4 as x =4 and y = 1 also satisfies the equations, but reduces all Elements to Y..

The highest common factor of x and y, or the factor by which they can be cancelled down, if you prefer, is the Reduction Index. In Above 2
[10] 177 x 176 was 16 and y was 9. As these are prime to each other the Reduction Index is one.
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D2. xyz SOLUTIONS

[E
N
N

Calculating using 3 Unknowns is more complicated than xy only, and is to be avoided by any who hate simultaneous equations! Although
x and y must be clearly adjacent to each other, z and further Unknowns required, may be detached, and often are.
In Below 1 x and y have been employed as previously, but the calculation is ‘stuck’ by a Gulf until a suitable choice for z is made. Then

two equations have to be found in the form kx + ly = mz for the relative values of x, y and z to be calculated.
AN EXAMPLE OF xyz CALCULATION

D £ NOTE: THE CHOICES
2% + 6V - 57 FOR x,y & z ARE NOT

e Y =7 LIMITED TO THIS

f EXACT PATTERN.
< NOR ARE THE TRAIL

XYy IE. THIS SOLUTION
2x + 3y \K y z CAN BE CALCULATEI
>
IN A VARIETY OF
X+ N Xﬁ o WAYS.
F

In Above the Element at corner g + z must equal y + (x + 2y). it is therefore x + 3y - z.
All Elements are similarly calculated.

Since DE = FG and DF = EG two sets of equations can be calculated, but there is no guarantee the sides of the equations will always be
different. If not, other lines will need to be chosen.

Now DF = 6x + 10y -5z and EG = 4x + 8y - z so 6x + 10y - 5z = 4x + 8y - z which reduces to x + y = 2z---(1).

Likewise DE = 6x + 7y and FG = 4x + 12y - 8z which finally results in 2x + 8z = 5y----(2). from (1) and (2) may be calculated that
x=2, y=12 and z=7. | have not shown the actual rectangle as this can be calculated readily.

The previous method fails in that determination of the Reduction Index is difficult or impossible ***to be concluded ***.

D3. xy + xy SOLUTIONS

t 9=
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An alternate way of calculating rectangles which have a single step is to create a formula from the equations Above.
| have found this useful in some computer programs, but found that some of the resulting solutions could be
calculated on x and y only, and the rest on x y and z, when it appeared that xyza solutions would arise!

D4. COMPLEX SOLUTIONS

The smallest Order for Valid Complex solutions is 13. This is because the smallest ‘cover’ around the smaller rectangle is 4, and the
smallest Order for Valid rectangles, 9.

Below shows the algebraic form from which it can be seen that the differences in dimensions in the old rectangle have to be
4x. as 33 - 32 in [9] 33 x 32 is not divisible by 4 all Elements have been multiplied up 4 times. Construction is easy.

Note there are 10 solutions in all, as there are 4 for 132 x 128 , four for 261 x 259 and two for 27 x 25 according to the rotating of the
original rectangle. It is obvious that twins will exist for all solutions, usually sets of 4 unless the original rectangle is symmetry 2. The full sizes
for the Above are 540 x 500, 528 x 512 and 522 x 518 all having Semi-perimeters of 1040
being 8 x 130 the original Semi-perimeter.

Syl X+y | ALGEBRA OF 4 ELEMENT COVER.
y X NONSIMPLE COMPLEX SOLUTIONS.
RECTANGLE.
130
14 13 67 65 131
1 : 60
13 [1 12 2] 5 63 2| ., o
5% 7 |28
5/ 4 | 6 ‘ 36
16
[13] 27 X 25 (1) NS [13] 132 x 128 (1) NS.  [13] 261 x 259 (1) NS

D5. UNKNOWNS THEORY

The more complicated the Squared-Rectangle and the greater the amount of Elements, the more difficult the calculation
becomes, and the likelihood that more Unknowns may have to be used. In practice a rectangle may be calculated using more Unknowns than
the basic minimum, but as this always means much more calculation, it is sense to check and keep the Unknowns to the minimum.

Clearly the smallest amount of Unknowns for non-Dud Rectangles is two, x and y, and for these to be usable x and y must be adjacent,
with a single line connecting both.
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For solutions up to and including Order 13, many can be calculated with xy only, and the rest xyz.
On the whole Compound and Invalid solutions tend to attract more Unknowns compared to Imperfect and Perfect ones.

Dud Solutions may in theory
X X |X often be calculated using

" unknown x only. However as
3x x is always 1, this is
just mentioned in passing.

The greater the Order used, the more complicated the calculation of the rectangle tends to become, and also the likelihood of more
Unknowns needed. However xy solutions do exist for all Orders even to Order infinity!
In practice it is always possible to use more Unknowns than the minimum actually needed for calculating.
Up to Order 13 many solutions can be calculated using xy, and all others using xyz. xyza is not necessary until higher Orders are used. There
is a tendency for Compound and Invalid rectangles to need more Unknowns than Perfect and Imperfect ones.

Even though x y and z may be necessary to calculate a particular solution ...
It is always possible to define every Elements in terms of x and y only in any Squared-Rectangle.

For a value of z in terms of x and y can always be found, and z can be removed wherever it occurs and replaced in terms of x and y only.
This was touched on previously). The statement above is still true however many Unknowns are necessary for calculation.

Which solutions require the most Unknowns in any given order? Referring to the solutions catalogue, the smallest solution needing three
Unknowns xyz is [10] 8 x 6 non-zero. See Below.

In this solution the line AB acts as a barrier, and Elements on the other side of the barrier cannot be calculated without introducing a new
Unknown z.
Such a line is termed a Gulf and examples are shown in Below 2.

There must be at least two sets of two Elements on both sides for that line to be a True Gulf.

Now by introducing repeated Gulfs in a diagram as Below 3 it is possible to create rectangles requiring exceptional amount
of Unknowns. Starting with sector a x and y are clearly required for the whole Pentad to be calculated. the next 6 Elements
In sector b are calculated using z. ditto next 6 using a and the final Pentad using b.
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- - Onder 22.
z 11 4 1 A X
3 R 3 . B gulf> 5
1 2 1 2 B
1 2 3 |
3 3 gulf a
2 11 1 1 C
M If
[10] 8x6 the smallest rect. _ 5 2 gu 5 b
requiring xyz unknowns 2 23

— This Requires FIVE
EXAMPLES OF TRUE GULFS UNKNOWNS xyza & b.

The Order 22 solution is actually non-zero with 1’s 2’s and 3’s only. It happens to be the one and only Order 22 solution requiring five
Unknowns, in the same way Above 1 is the only Order 10 solution requiring three Unknowns.

A table can now be shown-
Orders 7 to 9 xy maximum Orders 10 to 15 xyz maximum
Orders 16 to 21 xyza maximum Orders 22 to 27 xyzab maximum... and so on.

The Order range increases by 6 each time. Note that the lowest Order in each group contains only one Invalid solution.

Order |Order [Order |Order |Order |Order |Order
7 8 9 10 11 12 13
xy1 |2 1 4 5 9 24
xyz0 |0 0 1 6 9 27
Valid [show |Below Invali | Above
n d
rectan | xy 3 6 21 62 167
gles
xyz |0 0 1 14 80

Observations:-

1. xyz Valid Solutions hardly start until Order 12 there being just one for Order 11: See [11] 97 x 96 Below.
Note the Pentad end which acts as a Gulf.

2. Note the startling higher proportion of xyz Invalid solutions compared with Valid.

3. Note the acceleration of xyz Valid solutions.
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THE ONLY VALID ORDER 11 xyz RECTANGLE
<31 | x=2;y=12:z=7

17 A TRUE GULdince

2 24 |there are at least two Elemen
14| 120 | 7 bordering each the side of
40 tHe Gulf at top and bottom
26 31 [11] 97 x 96

PERFECT

See Section F18 for more on this.

56

1st 2nd

BRACKETS
77
88 - 28
/13/28/ < 60 —>
2 ] se A
o ;5/ /8 B 3rd 4th
52
44 o
[12] 165 x 157 D..

Look at Above 1 which contains a “Bracket”. The Bracket is the L shaped part of four Elements at bottom left (8, 36, 44 & 52). Above 2
shows two Brackets. There can be many repeated Brackets within a Rectangle.

Had the Element numbers been unknown and Algebra used to calculate the Rectangle, the shaded area would only need unknowns x and
y but the rest would ordinarily need the third unknown z. But, we can dispense with the need for z..
The Element A with a bit of inspection is always found to be a quarter of the positive difference between the horizontal & vertical lines. So in
this instance, (60 + 28) + by 4 = 8.

If a second Bracket is added as in Above 2 then B will be a quarter of 96 (52 + 44) less 80 (36 + 44) that is 4.

If there was a Third Bracket then C would be found to be 2, and the fourth D would be 1.

Although A, B, C, D seem rather like the Independent Elements mentioned in Section C the set up is somewhat different. However D C B
and A have the ratios of 1:2: 4 : and 8 which is interesting.

Where the whole rectangle can be calculated using x and y only, irritating fractional coefficients of both x and y will occur. However these
can be eliminated by calling the initial Elements x and y, as 2x and 2y (or 4x & 4y, 8x & 8y... as appropriate)

(NOTE : As the values in the shaded area do NOT stay the same when further Brackets are added the actual values of Elements calculated

here do NOT fit into proper Rectangles)

D6. MORE ON UNKNOWNS THEORY
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Does the Pentad part of Pentad solutions always form a Gulf, and are all Pentad solutions xyz or greater?

No - look at Below and choose x and y as the two left corner squares - the Pentad acts as a barrier, and z appears necessary.
A

< THIS DIAGRAM

/\ SHOWS THAT THE
NN

EXISTENCE OF

> X A PENTAD DOES
v NOT ALWAYS
MEAN 3 UNKNOWNS
(@

T ARE NECESSARY

But with x and y chosen _inside the Pentad the whole rectangle can be calculated following the trail line!

This can happen due to a single element bordering left of BC , or left of AB or both.

This means some Pentad solutions may be calculated with xy only. In Above 2 the Pentad does not form a Gulf since the barrier is in one
direction, not both. But most Pentad solutions require at least three unknowns for full calculation.

It is interesting to observe that in Order 12 where 94 Valid + Invalid solutions exist, 47 of which are Reduction 1 that there
are just three xyz Reduction 1 solutions, 297 x 296, 313 x 280 and 353 x 280 (all with Pentads).

There are 11 others with Reductions 2+.

But in Order 13 almost half (38 of 80) xyz solutions are reduction 1 even including the Invalid. Although xyz are not mostly smaller ones,
there is a tendency for highly reduced Perfect rectangles to be xyz rather than xy.

The reason for this is made clear in Section E.

1. Where any Rectangle pattern is drawn at random choosing the best or most suitable sites for Unknowns x and y is often a problem and a
careful inspection is necessary.

Many solutions which apparently require three unknowns xyz can be calculated with xy on closer inspection when better choices of x and
y are seen.
As all xy solutions can also be calculated using three or even more Unknowns, it should be made clear that xy strictly refers to two being the_
minimum amount of Unknowns.

Xyz, xyza also refer to the minimum amount of unknowns, when in practice more could be used to calculate the solution.
2. A further complication is that the choice of x and y in any given solution is not fixed.

Whereas in some solutions suitable sites for x and y are very restricted, others will have a large number of acceptable sites. Unlike z, a, b,
c.. x and y obviously have to be chosen adjacent to each other.
z and further unknowns can be sited next to x and y in many solutions, but frequently are separated from x y and one another.
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Shown Below
DIVIDERS EXAMPLES OF STEPS. |
_‘ L‘ ] & SO ON.
1 STEP 2 STEPS 3 STEPS

NOTE- A GIVEN RECTANGLE MAY HAVE SEVERAL EXAMPLES OF THESE
IN VARIOUS PLACES. THE RELEVANT FEATURE IS THE MINIMUM
NUMBER OF STEPS IN A RECTANGLE. STEPS MAY ALSO BE LEFT OR RIGHT.

In many solutions the solution can be divided by a single step, as Above 1.
Often this occurs many times in a solution.

In some solutions these steps can also act as a Gulf. Where the three lines making up the division are not bordered anywhere with just
one Element - and that means on both sides of the division, not just one - i.e. in 6 places, then the division is a Gulf.

In such cases x and y can only be chosen on one side (or other) of the Gulf, and it is found impossible to calculate Elements on the other
side of the Gulf since this forms a barrier. However choosing z as an Element on the other side of the Gulf sometimes is sufficient to calculate
the whole rectangle.

It is important to observe in xyz solutions that x and y can be chosen one side of the Gulf and z the other, ( i.e. x and y chosen from left
and z from right side or x and y from right and z from left side).

Some single step divisions form a barrier from one side but not the other!

These are One-way steps. if x and y are chosen on the correct side of the step any other Unknowns found necessary will not due to this type of
Gulf. Steps divide into three types

1. Solution [16 ] 503 x 403 this can be calculated thus - 1 34 35 36 37 4 41 45 86 69 54 77 140 163 240 263 with 1 and 34 being x and y
respectively. But 77 and 86 chosen as x and y connect with 163 and 240 only, whereas 54 and 77 connect with nothing. In this Rectangle any
adjacent pair from 1 34 35 36 37 4 41 45 86 69 can be chosen as x and y whilst adjacent pairs selected from 54 77 140 163 240 263 would

require a third unknown to calculate the whole solution.

Valid pairs for xy are 1 34,1 35,1 36,1 37,4 37,4 41,4 45,34 35,35 36,36 37,37 41,41 86,41 45 and 45 86- 14 in all.

In the pattern of x y x + y 2x + y x + 2y and 3x + y this pattern can proceed with further Elements none of which can be used effectively as
xandy.9 pairson 6 Elements are possible, which would seem to be the least possible.

On the whole internal Elements will more often work as x and y; two side Elements are less likely.
The Elements 1 34 35 36 37 4 41 45 86 69 in the Above solution is termed the xy-Block. Another example is Below.
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a
Above [13] 638 x 465 is shown. The solution can be calculated using x & y only as long as the choice of x and y fall within the 5 Elements in the

SE Corner.

D7. ENZ SOLUTIONS

In ENZ solutions the xy-Block includes the entire rectangle.
Any xy solution can be calculated using two appropriately selected inner Elements for x and y, but it is possible in a relatively few xy solutions
for x and y to be the two end Elements. These are called ENZ solutions.

ENZ solutions can be Invalid or Valid, symmetric or otherwise, Perfect or Imperfect. Symmetric solutions are frequently found.

The Sides Index is always of the form S2#2# and both ends of ENZ solutions are Triads.

| devised a computer program to calculate all possible solutions to a given Order, and uses all three types of Add-ons later shown. Its only
drawback is that same solutions can be produced up to 4 times.

; IF A & B ARE CHOSEN
A F FOR x &,
0 THE WHOLE SOLUTION
d E | CAN BE CALCULATED
B1—5 G IN TURN FROM A TO J

[10] 130 x 79 AN ENZ RECTANGLE
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If A and B above are chosen for x and y, the whole rectangle can be calculated in terms of x and y only. Likewise | and J are suitable sites
for x and y, but not all adjacent pairs can be sites for x and y without the need for z, such as E and F.

| adapted the computer program by replacing the Triad end with a Pentad, Septad, Octad ... In the Octad set an interesting feature
emerged - an Octad solution can always be converted into a Triad solution!
See E6.1. for full details.

100 68 Code A for Elements at top
A 87 97 Code C for Elements at bottom
,_\ 19 Code D for Element at top &
[ CODE DCADD..
83 c | 96 o _
66 86 adjoining Element at bottom (ie A + C

Regard the pattern above as any ENZ pattern randomly drawn, the top left Element being larger than the bottom left Element. Ignoring the
Internal Elements and looking at the combinations of external Elements between them, we have 3 possibilities:
1. At Top only which will be called A.
2. At bottom only which will be called C. and
3. Adjoining Elements at Top and Bottom (e.g. 87 and 96, or 97 and 86) which we will call D (rather than A & C).

We now consider the relative sizes of 100 and 83 at the left. 100/83 gives 0.83 exactly. Different ratios give, not surprisingly, different
codes.

DCCC 62% 63% 64% 65% DCCD 66% 67% DCCA 68% 69% 70% 71% DCDC 72% 73% 74% DCDD 75% 76%
DCDA 77% DCAC 78% 79% 80% 81% DCAD 82% 83% 84% DCAA 85% 86% 87% 88% DDCC 89% 90%
91% DDCD 92% 93% 94% DDCA 95% 96% 97% DDDC 98% 99% DDDD 99.5%

D8. CALCULATING OUT ALL SOLUTIONS

This Section discusses the calculating all possible Squared-Rectangles for a given Order, and the ways it might be done.
Is there a way of being sure that all possible Rectangles have been found?
Are there any shortcuts in doing this? Well, yes but is not easy!

There seems no way of producing all Perfect and Imperfect solutions without Invalid types such as Zero and Non-zero arising. It is logical
to start with the lowest Orders first and work upwards.
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There are so few Order 9 and 10 solutions that these are easily found.
It seems sensible to amend existing known solutions by adding a single Element in various ways and recalculate the rectangles formed, and
adopting this idea | found all Order 11, 12 and 13 solutions that are Perfect, Imperfect Non-zero or Zero by the Add and Deduct rule.

ADDING INTERNAL ELEMENTS & RECALCULATING

34 58 49
50 G— 1940 86 80 |89 2 71
I AlB
E 1( 1 = ]_(.
P o PP 1.32
44 | 38 6| g5 |82 10 o, | 88

[10] 130 x 94 (65x 47) [11] 224 x 162 (112x 81)  [11] 209 x 159
NOTE THAT ELEMENTS CAN BE ADDEDATAB & CD
ALSO AT EF & GH (NOT SHOWN)

Look at above 1 where the lines ABC DEF and GH indicate positions where a single Element can be added to create a new rectangle up an
Order. Two of four possible have been shown above 2 and 3, having been previously calculated.

Note that the lines have been carefully selected so they are not adjacent with any single Element, e.g. Line GD will cause a Compound
solution.
Although each resultant rectangle has to be laboriously calculated, the advantage is that the results are mostly different every time a different
Order 10 solution is used, but duplications do arise. Many but not all Order 11 solutions are produced this way.  The remaining solutions
can be obtained by using non-adjacent lines which touch the sides of the rectangle.

Suitable examples of these are ST, UV and WX in above.

The Lines referred to above will be referred to as “Add-Lines”
When an Element is added in this way the value of the Element can easily be found if full dimensions are considered.
The length of the non adjacent Add-Line equals the size of the added Element.
See below where Elements added in various places take on the value of the line.
When reduced rectangles are used in this way, remember to multiply the line by the Reduction Index.
Also remember that the resultant rectangle may reduce as well.
Apart from these slight complications, the rule is simple and most important.
Where only three Elements border a line it is not possible to Add an Element from it.
Where four or more Elements border a line then it is an Add-Line and it is found that TWO possible Elements can be added from it as
indicated -
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>
—_—

Note that there are two possibilities regardless of the composition of the Elements e.g. two each side of line or one against three.

Where 5 Elements border a Add-Line there are always FIVE possible positions where Elements can be Added - despite various compositions
of Elements.

Where 6 Elements border a Add-Line there are always NINE possible positions.
Briefly the formula is as follows THREE None

FOUR 2 =2
FIVE 2+3 =3
SIX 2+3+4 =9
SEVEN 2+3+4+5 =14andsoon...i.e. 20,27, 35 etc
B G No matter where any line is drawn in
9 o7 a rectangle the ADD & DEDUCT RULE
144 127 means that an extra element drawn
L 67 =20 F at that line will have the same value!
41 37 So an element drawn at AB has
D 21 |N P a value of 241, CD of 185,
103 83 120
M 62 EF of 157, GH of 247, JK of 145
H LM of 41, NP of 46.

J K
[12] 368x247 Reduction 1. THE REDUCTION IN BOTH THE ORIGINAL &

RESULTING RECTANGLES MUST BE CONSIDERED. They may well differ.

The DEDUCT RULE is similar:-if 41 is removed line LM is stil | 41 in length.

If 37 is removed, line EP remains at 37- as 37 is prime the resulting rectangle
will be full size or Reduction 1.

Adding a square to a Perfect solution may result in a Perfect, Imperfect, Non-zero or Zero solution, and with others any of the four classes
may result. New solutions should therefore be created using inferior types also.

Also the symmetry can change, and/or the Reduction Index. If the non-adjacent line from a full dimensioned solution is prime
(1,3,5,7,11...) the resulting solution will always be full size with Reduction index of 1.
It will therefore always be Perfect. If a double prime the Reduction Index is either 1 or 2, and so on.

Below shows how the solutions are built up. Full dimensions are shown throughout.
Order7 |Order8 |Order9 |Order10
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24x21 |40x35 |69x61 [110x99 |209

“ 111 x98 |209
“ 120 x 104 | 224
45x30 |75x55 |130x94 |224
66 x64 |114x110 | 224
chart “ 105 x 104 | 209
showing 66 x55 |[114x95 |209

build-up 115 x x94 | 209
of
solutions + 3 more

Solutions are termed Deductible whenever at least one internal Element can be removed without the resulting rectangle hecoming
Compound, that is, with two adjacent Elements occurring. Using all Order 10 rectangles and adding various Elements at various internal
points the following Order 11 rectangles emerged -7 x 7,8 x 6(1), 8 x 6(2),10 x 9,11 x 8, 14 x 9, 14 x 10, 30 x 26, all Invalid and 97 x 96, 98 x 96,
98 x95, 112 x 81, 185 x 151, 185 x 183, 187 x 166, 191 x 162, 194 x 183, 195 x 191, 199 x 169, 199 x 178, 205 x 181, 209 x 127, 209 x 144, 209 x 159
,209 x 168, and 209 x 177 (8 Invalid and 19 valid).

Obviously there is no change in the sides index whether internal Elements are added or deducted. This means that in attempting to
discover all rectangles for a given Order, looking at each sides index in turn is very helpful.

This leaves the following solutions to be discovered by some other means -
Order 11,4 x 2 22 x 18 and 24 x 22 all Invalid and 177 x 176, 185 x 168 and 191 x 177 Valid. Six altogether.

There is a tendency for Non-deductible solutions to have comparatively few inner Elements and therefore many outer Elements. There
seems to be a disproportionate amount of Invalid solutions also.

It is possible to give a table where all Rectangles for the sides and Orders shown is Non-deductible.
Non-deductible Rectangles to Order 13 are -
Order 7, 1 Order 8, 1 Order 9, 2 Order 10, 4 Order 11, 6 Order 12, 9 and
Order 13,15. The amount is roughly the total of the two Orders Below.
By Order 13 the proportion of total solutions has already dropped from 100% to 5% , and it is clear that most Rectangles are Deductible.
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Suppose all Order 13 rectangles are known and the Deductible solutions for Order 14 found.
From the Above table, any solutions found with sides $2326 $2335 $S2344 S$2353 S2525 and S3334 is Non-deductible.
Unfortunately some will have sides listed against Order 13 too. The trick is to look at Order 13 rectangles where an Element can be

inserted along the side to produce a 2326 solution, and so on..
A

l INSERT AN ELEMENT AT AB TO CREATE A

| SOLUTION OF A WANTED SIDES INDEX
7 V/ eg. HAVE S2435 WANT SIDES S2535

So far only INTERNAL ELEMENTS have been considered. But it is often possible to remove a Side or even Corner Element and the result
to be a valid - by valid we mean 1. Not Single Ended, and 2. Simple (no smaller rectangles within) and 3 with Sides S2223 or greater. There are
therefore some Solutions which are Completely Non-Deductible - that is ones where not one Element anywhere (Internal or Side or Corner) can
be removed without causing a useless Solution.

Ignoring [5] 2 x 2 for which no Elements can be “Added” to it, the smallest such Solution is [7] 8 x 7 = [7] 24 x 21 full size.
| have only found the following “CND” Solutions to Order 11:
[718x7 (24 x21) [9] 6 x 5 (66 x 55) [11] 14 x 9 (224 x 144) [11] 22 x 18 (176 x 144) all Invalid in practice. This implies that all Solutions to and
including Order 11 - 53 of them - can be drawn from adding appropriate Elements ONE AT A TIME to
[7] 24 x 21 or [9] 66 x 55!
On testing all Order 12 Solutions not one CND Solution was found by me.
It is possible that all Order 12 and Order 13 Solutions may be drawn from one of the above four CND Solutions!

D9. REPEATERS

If a corner Element in a given rectangle is replaced by 2,3,4,5... repeated corner Elements as below, what effect does it have on the
Orders, Sides and Semi-perimeters?
The series following shows a relationship, and other solutions are found to have similar progression series:-
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REPEATER CORNER SOLUTIONS THE REPEAT MAY BE ADDED HORIZ OR
ETS) VERTICALLY AS SHOWN WITHIN THE

" ~)
A FT?:;{F::_“E B ot [T [F| ®  SeLecTED CORNER.
X+ 3y My VERTICAL REPEATS
TWO E|R| (ETC.) ASBD =4y 3x +y (AT CD) HAS TO EQUATE
CLONE | o . E|-| | MULTIPLES OF 4y (AT CD)
X E y X + 2y
2X+Y x4y

[7] 40x35 WITH 1 ELEMENT AT ABCD  HORIZONTAL REPEATS
x+4y AT BE HAVE TO EQUATE WITH MULTIPLES OF 3x+y PLUS x AT BE

The Above when calculated gives the following results-

1H at corner 7 Elements 24 x 21 SP 45 1V atcorner7 Elements 24x21 SP 45

2H at corner 8 Elements 40 x 29 SP 69 2V at corner 8 Elements 32x34 SP 66

3H at corner 9 Elements 56 x 37 SP 93 3V at corner 9 Elements 40 x 47 SP 87

4H at corner 10 Elements 72 x 45 SP 117 4V at corner 10 Elements 48 x 60 SP 108.

Increments of 1 16’s 8’s 24’s 1 8's 13's 21's

Note increments of 16 8 24 and 8 13 21. Where 16 + 8 =24 and 8 + 13 = 21 and 24 and 21 are significant.
All the repeated corners have the value of 12 as full dimension.

By the Add and Deduct rule all Repeaters must have the same value.

As a group, Repeaters are not acceptable solutions in this Book. But their theory is useful and relevant. In particular bits of them can be
used effectively with additional elements or adjustments to obtain further solutions which includes Squared-Squares.

Where two different double cornered solutions can be found, they can sometimes be placed together and the four squares made into one
Element to produce highly reduced rectangles. This subject is continued in Section G3.

| took the solution [9] 69 x 61 and calculated the eight Repeater Solutions caused by doubling horizontally and vertical each corner
element in turn. Some resulted in a rectangle where the height is greater than the width as indicated in the values below. Each ‘solution’ is of
course Order 10 in effect. The set of solutions are with double corners are -
114 x 85114 x 82 103 x 82 109 x 85
93 x98 93 x 101 104 x 101 98 x 98 from which may be observed by adding each pair - 207 183 207 183 207 183 207 183 1. Four sets of 207 (x)
183. This is 69 x 61 multiplied by 3!
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This feature is always found true for any given solution i.e. the vertical and horizontal Repeater dimensions when added together give
amounts three times the dimensions of the original.
2. The second dimensions come in pairs i.e. two of 82 and 85 and two of 98 and 101.
The difference between pairs is found to be constant, 3 in this example but the difference varies solution to solution.
It is a pity there appears no way of calculating the dimensions of individual Repeaters by simply knowing the original is
[9] 69 x 61 with its corners 33 36 25 and 28. So, the value of these discoveries may be minimal.
However if dimensions only are sought, upon calculating one Repeater its counterpart can be easily found without algebra.

Below is a pair of Repeaters for a solution selected at random. The patterns are identical but for the vertical and horizontal Repeaters. If
the corresponding elements are added in turn the result is below 3. The result is the Source Rectangle! However apart from any possible
reduction the element values are Three times the normal full Dimensions.

Note that the corner element replacing the Repeaters is three times 33. For clarity, only full dimension have been shown in the Order 11
Repeaters.

The property is true whatever example is taken providing of course that the same corner is selected for the Repeaters.

This means that having calculated one Repeater only, and knowing the original Rectangle, the elements of the second Repeater are easily
found without more algebra.

78 57 135
87 180
93
30 48 27 30 57 78
18 3
27| 12 21 | 24 3 48| 3 |21
66 39 33 33 66 45 132 99
33 84

1st Pattern, 2nd Pattern, 3rd Pattern,
Is [10] 105 x 102 + Horizontal Repeater, [10] 105 x 102 + Vertical Repeater. Is [10] 105 x 102 up-rated 3 times,

The result in deducting instead of adding the Elements was totally unexpected!
Not surprisingly a mixture of negative as well as positive Elements arises, and although the construction appears really chaotic, adjustments
made to the shape always suitable correct it. An L shaped construction arises and as the deduction of the repeater part gives zero the Order of
this ‘L’ shape has dropped two. In below deducting the elements in the above Repeaters has been shown after adjusting the negatives. Zero
elements do not always arise as here.
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Owing to the negative adjustment, the ‘L’ pattern may appear somewhat changed from the original - no problem in this.

ok , FOUR-FOLD
21 " 6 1 SQUARED-SQUARE
Gl S —— WITH CENTRE
3 2 c ELEMENT ¢
o 15 / 3
d 4

If the ‘last’ element - in this case 6 - is axed ab is always found to equal cd and this allows calculation of a fourfold Squared-square of the
format above! See Section L regarding these Squares.

| stumbled across the following constructions which are coincidental and do not apply to most Repeater pairs.
1. Cases where a pair of Repeater solutions have a common side, the pair of solutions can be placed side by side with the four Repeater
squares made a single element, 30. See Below 1.

2. Construction into a larger solution by putting two repeaters
together then adding two side and two top elements.

Four — adjacent Elements of 9 make one of 18. See Below 2.
NB. Further solutions are also possible (a) by adding a Pentad at AB
and removing 34 and 37. (b) Or by adding an element at CD and

increasing the outer elements. © By adding 3 at E and repeating construction up-side-down a Symmetric Solution arises. See Section E where
all these Add-ons are fully described.

The Reason for Above 2 giving the Rectangle is by observing 37 x 29 and 35 x 34 the semi-perimeters of which are 66 and 69 a difference
of -3 together with AC - BD being the same, namely -3. These SP’s (69 and 66) are always the values at the top even if the construction fails to
be a Rectangle.

These differ from the add-ons in Section E and F. The Add-ons are not as convenient. In Sections E & F some or most of the Elements do
not need to change, but in D10 to D21 the Solutions require total recalculation by Algebra or a set of known Solutions readily available. Put
differently the Solutions contain Elements 100% different from each other.

Most of the following in D10 to D16 require either TWO or THREE known (or calculated) Solutions to start with, from which connections
can be found enabling the dimensions of Solutions in ascending Orders to be calculated.

Such series in theory continue forever.

D10. ADDING SINGLE SIDE ELEMENTS IN S2223 SOLUTIONS
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A - G = H
15
28
3| 3 013 49 5’ /25/
9 9 2 19 [
6 20 S 33
B
| A/S 36
D
[7] 24 x 21 (8 x 7) [8] 40 x 35 (8 X 7) [9] 69 x 61

Above a single Element as shown by the bars has been added. Note that adding at CD will also produce [9] 69 x 61 but normally there are
two choices such as EF and GH. All rectangles produced are $2223.

They always contain distortions and negative values if the original pattern is strictly maintained. [10] 110 x 99 (10 x 9 zero) and [10] 111 x
98 come from [9] 69 x 61. But $2223 solution [10] 30 x 26 does not.

The full dimensions of larger rectangles can be determined from these figures. The differences in the dimensions is 3 5 and 8 all Fibonacci
numbers and the differences continue 13 21 34 55 89... each being the sum of the previous two.

24 40 69 111 187 297 496 /84 < larger dimensions
diffs 16 29 42 76 110 199 288
(16+29-3) (29+42+5) (42+76-8) (76+110+13) (110+199-21)

21 35 61 98 166 263 441 695 <--smaller dimensions
diffs 14 26 37 68 97 178 284

(14+26-3) (26+37+5) (37+68-8) (68+97+13) (97+178-21)
differences
3 5 8 13 21 34 55 89 <<in dimensions

The Above shows that the series continues [10] 111 x 98 [11] 187 x 166
12] 297 x 263 [13] 496 x 441 [14] 784 x 695 [15] 1314 x 1170 [16] 2043 x 1810
17] 3446 x 3069 [18] 5345 x 4735 [19] 9024 x 8037 [20] 13992 x 12395
21] 23626 x 21042 [22] 36631 x 32450 [23] 61854 x 55089 [24] 95901 x 84955
25] 161936 x 144225 [26] 251072 x 222415 and so on. Unexpectedly, note that the Fibonacci numbers are deducted and added alternately -
Why is this!
The Semi-Perimeters range 45 (Order 7) 75 130 209 353 560 937 1479 2484 3853 6515 10080 17061 26387 44668 69071 116943 180856 306161
473487 (Order 26) . . . which may prove to be a useful representative set of values.
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Note that such a series cannot be found unless three solutions are known initially.
It is also possible to calculate the corner Elements which arise from the series:-
Order7-(5+4=9)Order8-9+6=150rder9-15+ 10 =25 Order 10 - 25 + 16 = 41
Order 11 - 41 + 25 =67 Order 12 - 67 + 42 =109 Order 13 - 109 + 68 = 177 Order 14 - 177 + 110.

This may be a bit clearer by explaining
(1) That each corner number is used in the following Order (e.g. 5+4=9 9+6=15) and
(2) Numbers following “+” form a growth series 6 10 16 25 42 each the sum of the previous two. And,
(3) The table is gradually built up forwards but also backwards in the case of Order 7.
Logically the next group of similar type is [10] 120 x 104 (30 x 26 invalid)
[11] 199 x 178 and [12] 315 x 278 where the dimensions differ by 16 21 37 respectively. Although not Fibonacci numbers, the series is formed
by the addition of the previous two, as before, namely 16 + 21 = 37 21 + 37 = 58 and so on. So far | have been unable to find the relationship for
the series.

Another series found by me links up as follows:-
[11] 190 x 171 difference 19. [12] 324 x 284 difference 40 [13] 522 x 463 difference 59 [14] 873 x 774 difference 99
[15] 1382 x 1224 difference 158.

Now the differences between the first numbers (i.e. 190 324...) are 134 198 351 509 919 which are respectively for the later values 134 + 198
+19 =351 198 + 351 - 40 = 509 351 + 509 + 59 = 919.

Now the differences between the second numbers (i.e. 171 284...) are 113 179 311 450 820 which are respectively for the later values 113 +
179 +19 = 311179 + 311 - 40 = 450 311 + 450 + 59 = 820.

When these numbers are added to the earlier dimensions [13] 522 x 463 [14] 873 x 774 and [15] 1382 x 1224 are the result.

Above shows the basic procedure is probably easier to follow.
Again, the corner Elements can be determined bit by bit as follows Order 11 (34 + 52 = 86) Order 12 86 + 28 = 114 Order 13 114 + 80 = 194 Order
14194 + 108 = 302 Order 15 302 + 188 = 490.

D11 ADDING DIADS TO 2224+ SOLUTIONS

Whenever a SR has a side of 4 Elements or more another SR exists with two end Elements added -
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[10] 130 X 79 SP209 [12] 320 x 288 (288 X 320) SP608

52 47 .
104 o6 ag 59 [18] 194 x 158
45 44 41 3 13 20| 37 | 42 Symmetric is
3 2432 46| 33 obtained by taking
1112 80 80
34 35 38 72 46 the difference in the
56 A As above but
23 =y 42 Elements from the two
_ reversed
= = = 36 15 patterns to the left.
57D 73 C - 47 59 / |
DIFFERENCE 16

DIFFERENCE 16 ..=AB
If similar comparisons are made it is always found that AB=C -D or E- F = C - D i.e. the difference between the ends and the two
Elements are the same in the above case, namely 16.

In the Above example if the 57 and 73 are reversed and each deducted from 209 (the Semi-perimeter) 136 and 152 are obtained! Does this
property hold good whenever two end Elements are added? [11] 191x177 is shown below.

The ends are 123 and 68 and 368-123 and 368-68 are 245 and 300 respectively. 245 + 300 = 545 and there is an Order 13 solution 120 x 109
(600 x 545) having ends of 245 and 300. See below 3 ... but now for the surprise!
This is not below 1 with 2 added Elements, but below 2 is!
Note however that the full upper dimensions is the same in below 2 and below 3.
When the shaded Elements are removed a Compound solution is produced. Note that the side 191 is repeated.

Another property also applies when considering the four solutions. [11] 185 x 151 to [13] 615 x 487 and [11] 191 x 112 to [13] 600 x 415 -
177 - 112 = 65 which times 2 is 545 - 415 = 130. Similar solutions prove the point.

[11] 191X177 SP368 [13] 600X415 SP1015~ [13] 600X545 -  [11] 191X112 NONSIMPLE
102 | 89 215 | 200 160 & | 65 |59
180| 205 5
27|40 | 49 30 20
1 ° 120 140| 80 22| 24 47 | 53
g
75| 45 A0 150| |60 12 |55 45 >3
39 20
29 85 150 23
123 68 7/ S / 80 / 3303-68=235
235/ 180 " 300 /| 303-123=180
368 - 68 = 300 v, 7 25",
368 - 123 = 245
545

D12. ADDING SERIES OF TRIADS

140




141

Below shows the effect of adding an end Triad of 3 Elements. Note that the connecting Element in Below 2 is 16 which is both 60 - 44 and 204 -

L+V] 4Vv N avT LtV YUY N Uve  MLJHIINGD U IO

LL2)
Vv 672x450

45 [13] pd 169 NOTE THAT
60 < 638x422 é/ 520 60 - 44=16 &
[13] > 19 | 2¢ 123 -1 71 || 204188718
593x392 | 44 16 1017 < 644x422 T 672 aa
28 33 /@/ 172 108 _27:;_25

N N

[13] 608 x 407 593x393
188. This feature is always true when triads are added in this way., SC-YT'ONS OBTAINED BY ADDING OF TRIADS AT VARIOUS POINTS.

The following shows 4 solutions in one with three successive Triads added on the left to the original Solution of [9] 75 x 55 (shown in
purple). What follows is a useful find.

For each Triad added a total recalculation is needed, and at first sight there seems no relationship from one solution to the next. However,
notice the left hand linking Element of the Triad is the same each time (in this case 5). Notice also the repeats of 20 and 75.

389 106 30 20
—| 1450 304 111 I 25
5 1470 414 B | o
5 1545 351
cU 5 5 1310
20 15 19
: 3 200 [
72 |70 o
25 289
101 96 20 113
384 379 359 76 422
1435 1415 1340 284 1575
1060
~[9] 75 x 55

/
, 12] 386 x 207
"[15] 1828 x 573

X 2885
But the numbers 30 113 422 1575 . . . in right hand bottom corner are related. For 113 x 4 -30 = 422 and 422 x 4 - 113 = 1575. The next value
is therefore 1575 x 4 - 422 = 5878. This relationship holds true throughout e.g. 379 x 4 - 101 =1415,
56 x 4 - 15 =209 and so on.
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The only ‘snag’ in applying this is that we need to know (or calculate) a solution and a similar one with a Triad added, but once 2 solutions
are known then an everlasting series can be found using only arithmetic.
If E1 and E2 are the known full Elements in a given position in the Rectangle then E3=E2x4-E1and E4=E3x4-E2and E5=E4x4-E3 and
so on. It is possible to express all such formulas in terms of E3 E2 and E1 alone if required.
E(n2) =4 x E(n1) - E(n) is the general case. In the above we only need to know the new values of A and B from this formula to complete the
whole next Rectangle by arithmetic.

Note that the series concerns Full Dimensions and the sizes of individual Elements keeps increasing. It should be born in mind that
occasional reductions are possible. e.g. [9] 75 x 55 reduces to [9] 15 x 11.

There is a relationship between the numbers 75 386 1828 8265 ... and 55 207 573 2885.

As said before, two Solutions need to be known initially of the format [O] M x N and [O+3] M1 x N1 and we need to find the Full
Dimensions for [0+6] M2 x N2. After some searching the Writer found N2 = N1 x 4 - N.

M2 is harder to find and is M2 = M1 x 4 + N1 x 2 - M - N: this can be rewritten using N2 but this form is more convenient. These two
formulae can be repeated ad lib. Without explaining why, the second formula was found after realizing that

c P
W\A B Lines B, C, D

have been purposely drawn
through the middle

N \ of Elements x y z.
‘ ) y Distances AB AC AD ..
Z are then found to be
\/ half N, N, one & ahalf N . .

Also AB=BC=CD..

The vertical centre point of each Triad is effectively one-half the value of n (the smaller Dimension). See Above.
These formulae are important and mean that sizes of Rectangles can be found without calculating any individual Elements.

So if we consider rectangles with at least one Triad at one end we can divide such a Rectangle into 1 or more sectors each of which is %zn
by n in size (or area) providing we divide the linking Elements horizontally down the middle. Here 3
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Square of n x n

/O/

" /{M{j&( BDEF forms a
1% 1x Rectangle

/ 1.5n x n

C D |

T A Bl ABCDforms a

Triads are shown and if the value of n is known, so is the distance EAB as it is 1'2n. If the remainder of the distance across is j, the whole
distance
m = 1%n + j i.e. the dimensions are (1%2 n + j) x n and the Elongation is n/(1%2 n + j).

If we add a further Triad will the Elongation be n/(2n + j)? This would be true if j remained the same proportion of n, but no, it does not! In
fact the proportion j / n increases each time a Triad is added. Having said this there will be an optimum size for j / m.

We saw earlier that if the extreme right linking Element is 1 then the linking Elements to the left will be 4, 15, 56, 209 etc. (if greater than 1
then 1, 4, 15, 56, 209 etc. have to be scaled up accordingly). This explains why the proportion of j / n increases as the Order increases three at
a time.

D13

WHERE ARE ILLUSTRATIONS FOR THESE???
In Above 1,377 -368=9=1"2x6231-225=633-28 =5 and 36 - 25 = 11 difference = 6.
In Above 2, 1103 - 1088 =15=1"2x10 675 - 665 =10 100 - 81 = 19 105 - 76 = 29 difference = 10.
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D14 ADDING A MIDDLE ELEMENT

+12 +11
36 33 48 ?e/ 44 A B
1’%
5 1.4-10 -6 .11 12‘ 12 15 |11 |11
5 +2_L+3A 11 +29 .
9 28 4612 22 +15 B
25 T 22
16 34 +18
The Differences form
[9] 69 x 61 [10] 130 x 94 (65 x 47 R2) a Rectangle!

A curious feature arises when an Element is added bordering the edge of any given SR. Take any SR say [9] 69 x 61 and add an Element at
a line touching the border as above.
[10] 130 x 94 is the result and the new Element 38 (= 36 + 2 or 33 + 5).

As usual every Element changes value, but by how much? Element 36 becomes 48 an increase of +12, 5 becomes -6 down
11, and so on. In Above 2 the same format has been deliberately shown causing some negative Elements to appear.

Looking at the black numbers in above 2 , we see values which fit as a Squared-Rectangle!

At first sight it looks wrong as at AB -12 and -11 does not total +15! But on drawing a rectangle as above 3 AB is in fact becomes external
and the rectangle is true! Also to fit, some ‘sliding’ is necessary.
Without further examples being shown, this feature is always found to be true when adding a border Element to any rectangle. It is also true
when an internal Element is added as seen below.

It is true to say that the rectangles above 1 and 3 when added give above 2 (apart from the added Element 38).

Rectangles of type above 3 will be termed hidden rectangles and are always Compound to a lesser or greater degree. Although interesting
the Above feature does not offer much practical help in constructing new rectangles from old and there is no quick way of calculating new
rectangles.
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72 71 66 27 25
27 27 25 2!
52 C 2
10, 7 |7
18 19 61 21 23
55 7 56 21 14
23
21 37 4, 21
\ HIDDEN RECTANGLE

[11] 209 x 127 (FROM\10] 130x79 wiTH [10] 79X 48 NONSIMPLE
ELEMENT ADDED HERE

In above 1, the bold numbers are the increase from the respective Elements of [10] 130 x 79 and these are repeated in above 2. Again, a
Compound rectangle arises. (Note that 0 cannot be inserted at C making [11] 79 x 48)

In testing a number of cases, | found the Hidden-rectangle had Repeater Elements and is always Compound and Invalid. Also the
rectangles were two rectangles side by side, some with a single rectangle adjoining them and sometimes without - See Below.
TYPICAL FORMS OF

—- HIDDEN RECTANGLES
/ / /\ NOTE THE REPEATED

ELEMENTS WHICH
OFTEN BUT NOT
WITH AN ELEMENT BETWEEN .. AND WITHOUT ALWAYS OCCUR,

The table below shows a selection of rectangles where an Element touching a side has been added to form the rectangle in penultimate
column by adding the Hidden-rectangle.
1. Often the upper dimension of the Hidden-rectangle is obligingly the same as the lower dimension of the original rectangle, but in other
cases note the switch round of pairs e.g. 79 to 94 and 94 to 79 in the first two shown.
2. Notice that where this switch applies the added Element is the same (e.g. 56). Also the upper dimension of the both originals is the same
(e.g. 130). The upper Element of the 2nd rectangle is the Semi-perimeter of the other solution in the pair.
Orders | 1st Rectangle Hidden-Rectangle 2nd Rectangle |Added Element
10-11 |130x 79 down |94 x 89 Invalid 224 x 168 56" pair
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10-11 (130 x 94 up 79 x 33 Invalid 209 x 127 96" pair
10-11 [130x 94 <> 94 x 68 Invalid 224 x 162 58
11-12 194 x 192 <> 192 x 55 Invalid 386 x 247 116
11-12 | 205 x 181 <> 181 x 105 Invalid 386 x 286 106
11-12 [209 x 177 <> 177 x 30 Invalid 386 x 207 111
11-12 [209 x 159 down |168 x 7 2 Invalid 377 x 231 108* pair
11-12 [209 x 168 up 159 x 72 Invalid 368 x 240 108* pair
11-12 | 224 x 162 <> 162 x 45 Invalid 386 x 207 96
11-12 | 224 x 162 <> 162 x 96 Invalid 386 x 258 84
11-12 [ 185 x 151 <> 151 x 121 Invalid 336 x 272 100
11-12 [185x 183 <> 183 x 42 Invalid 368 x 225 61
11-12 195 x 191 <> 191 x 61 Invalid 386 x 252 70
11-12 [209 x 127 <> 127 x 130 Invalid 336 x 257 73

Unfortunately there is no obviously way of linking the added Element to the dimensions. Nor does it seem possible to calculate the
resultant square simply by inspecting the original.

Where only one Element applies between E and F Below then the Hidden-rectangle is divided by a single Element as shown in below 2.
Where there is a minimum 2,3,4 ... Elements between E and F however the hidden-rectangle is two rectangles side by side as in below 4. There

must be at least two Elements bordering A - B, ditto C - D.
yay 1 dJ C HIDDEN RECTANGLE

element :\//
B £+ D

E
ONE ELEMENT BETWEEN A & B

HIDDEN RECTANGLE

N

added

\ Element BN
E

>~ |

l_
TWO OR MORE ELEMENTS
BETWEEN E & F

D16 ADDING OF CLAWS

Consider the 3rd solution below. The 2nd solution is this pattern with three Elements added (i.e. 35 24 39) and the 1st is the 2nd with three
Elements added (i.e. 177 130 181).

146




147

Although the algebra is not shown it can be seen that each may be calculated using x and y in similar positions as shown. Observe that x
happens to be 1 in each case and y is 3 5 and 7. Can an arithmetic progression be assumed here an Order 17 solution calculated usingx =1y
=9. Yes! In fact an infinite series is possible x=111111 ... with increment of nilandy =357 9 11 13 ... with an increment of two for orders
8,11,14,17,20 ....

177 * 35 )
*
LE% 246 11 51 10
5 4 y 3
130_] 8 |y 24 | ©
* §2 1x * 1 )&
9 10 7% 8
* 47 6 6
51 242 - 5
181 * 39
[14] 488 x 423 - [11] 98 x 86 — [8] 17 x 16 repeater

This principle is found to apply in every case but note that
1. The arithmetic progression may have a negative, positive or nil increment.
2. The first two solutions chosen both have to be 2-2-2-3 sided, and both have to be calculated out (if not already known).
3. In substituting a Pentad for a Diad the property does no longer work.
4. The Reduction Index can vary throughout a series.
5. The status of solutions can vary throughout a series (see the example following with includes a Zero invalid solution for Order 14).
6. Looking at Repeaters can help to find the relationship easier. They are not useful solutions, e.g. A Repeater solution [8] 29 x 37 withx =2y =
5 and solution [11] 187 x 166 with x =1 y =8 can be extended withx=0y =11; x=-1y =14; x =2 y =17... for orders 14, 17, 20... The Order
increases by three each time.

HIDDEN RECTANGLES

If any solution is considered and the same solution with a Triad added compared, an interesting feature applies.
Take [12] 368 x 265 which happens to be [9] 69 x 61 with a Triad added at the join of Elements 16 and 28.

In Below 1 the Elements before the minus signs relate to [12] 268 x 265 and those after to [9] 69 x 61.

Although shown negatively as -69 x -61 in effect, the rectangle remains true.
Now in below 2 the results of taking the smaller from the larger Elements is shown in ABCD. If the linking Element (13) is dropped and 4
Elements added is shown a true rectangle of one Order higher (here 12 to 13) is created!
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Notice that if suitable choices for x and y are made in the below 1 such as 9 -2 and 16 - 5 or 7 and 11 then the new solution is calculated
quicker.

Although a useful property, it does require two suitable solutions already known to use it, and unfortunately there is seems no quick way
of calculating the solution with the added Triad. This is not the only link possible between two such solutions. There are at least two
symmetric solutions which can be found - see later.

Note that AC = 229 and BD = 242 and that the 545 (of [13] 545 x 447) can be determined as follows- 265 - 69 + 229 - 61 + 242 - 61 = 545. This
holds true with other values and solutions.

For any given solution, a Triad can be added in at least five different places, e.g. at E in below 1 where [12] 386 x 277 happens to result,
and [13] 581 x 277 is found by literally deducting the solution 69 x 61 from solution 386 x 277.

B A 5
136-36 129-33 100 96
o-2 16-5 168 7 11
34- r o5 181
93-2 25-7 113-28 68 18 85
c 59-16 43

E 13 D C = D

139 126 279 266
E F

[9] 69 x 61 and [12] 368 x 265 [13] 545 x 447

In Above 2 if an Element 13 is shown at F then two Elements of 98 can be added. The Elements in ABCD may then be added in reverse
Order to form a symmetric Mid-plus solution. The reader can check this out.

The numbers before the minuses Below in ABCD are the Elements of [12] 320 x 288 and those after the minuses are [10] 130 x 179. By
deducting one set from the other, adding two component Elements (optional) and repeating the Elements in reverse the symmetric solution
Order 22 in Below 2 is obtained, and also
[20] 194 x 158 with 79 and 79 taken out.

| have not observed any asymmetric solution possible.



A 5o | 52 47 B
g 96-44 88-419 >
104-45 ~ 13| 20 37 42
46 33 D
24-11 32-20 72-35 80-3&
80-34 56-23 D 79 79
C |
a
136 152 B 33
37 46
42 50
FROM [10] 130 x 79 AND
[12] 320 x 288 TO [22] 273 x 158-S¥M-5S 5o 59
& [20] 194 x 158 if 79' s removegh 47 A

If in D11.1 we deduct instead the Elements of [9] 69 x 61 from the solution of [13] 581 x 477 and make various adjustments another
symmetric solution is found. Again both Mid and Mid-plus solutions are possible.

To recap, starting with a solution A and adding a Triad somewhere on an edge to give a solution B, further solutions may be found as
follows -
Solution C - deduct A from B remove 3 Elements and add 4 - asymmetric solution.
Solution D - deduct A from B adding various Elements to form Mid-plus symmetric solution.
Solution E - deduct A from C adding various Elements to form Mid symmetric solution.
Solution F - deduct A from C adding various Elements to form Mid-plus symmetric solution.

From solutions A and B deduct A from B and add various Elements to form a symmetric solution (D11.3. refers)
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111-36=75 97-33-64 SYMMETRIC SOLUTION
116 ANOTHER IS FOUND
135 17-5=1p WITH 195'S REMOVED.
31241 _ 180-28552
23-9=14 20-7=13
85-25=60 43-16=217

195
195

AL A AN A PN AN P PN e ey e o

D17 ADDING OF SUCCESSIVE CLAWS

For this relationship we simply require any solution with a Triad End, for example Fig 1 - [9] 75 x 55.

If a CLAW is added as shown in Fig 2 the rectangle is calculated by algebra to be [12] 321 x 287. Note that the Elements within the bold
line have all changed with the exception of 5. Now if all the differences are taken, Fig 3 is obtained. Although not a rectangle Fig 3 can easily
be made into one by ignoring the zero! Thus it is a hidden rectangle.

So what happens if another CLAW is added as Fig 4?7 This is easy to calculate by adding the Fig 3 numbers to each respective Element.
So Element 15 in Fig 1 becomes 15 + 4 in Fig 2 and 15 + 4 + 4 in Figure 4 which is [15] 1447 x 1256! This idea can be repeated throughout so
the top 5 becomes 5+ 0,5+ 0 + 0, etc. i.e. always 5 whilst the bottom 5 increments by 1i.e. 56 7 etc. It is easy to complete the Rectangle by
arithmetic.

Obviously an eternal series can be found by using Fig 3 as an Arithmetic Progression with Orders 9, 12,15,18,21..... without the need
for any algebra. This idea is true for any solution with a triad and the Element linking the Dad always stays the original amount.

This idea of adding one solution to another to obtain a third was seen earlier.

There is no need to work out the second Solution by algebra although using algebra to calculate the Hidden Rectangle is. Often this will be a
Repeater solution - no problem.
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25

30

20

15

20

30

25

Fig 1

158

129

163

24

24

37

31

68

124

Fig 2

The same principles for Triads in the last section also apply to Diads. As before the series is infinite.

60

A 55

Ny

15

1 16

4

34

19

23

39

[10] 115

The next in the series is interesting since the double claw can be replaced by an Add Element to obtain another Solution (this is
mentioned in Section E) and a valid Rectangle is found - and this solution is like [10] 115 x 94 Above with an added Element at A. The next

X 94

Plus
this

5

4

6

7

721

35

28

726

44

30

37

153

81

148

382

530

Fig 4

and so

275 270
2d 15 20
105 2; 20 20200 on. ..
150

Hidden Rectangle [13] 545 x 470 (109 x 94)

solution is [16] 2503 x 2167
This means two infinite series are related!

It is interesting to see that if we Deduct the Hidden Rectangle instead from the first example in two stages, Symmetric solutions are also

found! Each of these has a running series which goes on forever!
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The next diagram shows how several Solutions are obtainable from an Original of Order O.

ADDING OF ARCHES

If arches are added to a Solution in succession there is, again, a formula connecting the values of the Elements.

[10] 115 x 94 has been chosen here and shown in red figures, but any solution can be used. By adding one Arch the Solution found is [14] 817
x 663. With a further Arch added [18] 5629 x 4555.

Look at the red values 11 and 4 (as values for x & y). Once new values have been calculated the whole Rectangle can be calculated
readily. With an Arch added these Elements become 29 and 11. To obtain the next values they are found to be three times the current value
minus the one before! Thus 29 x 3 - 11 gives 76 in the Order 18 solution. The next value is therefore 76 x 3 - 29 = 199 and the one after 199 x 3 -
76 = 521 and so on.

Two solutions, one Order 4 more than the other, are necessary for an eternal series to be calculated. So far | have found no formulae
linking the Dimensions.
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¢ [10]115x94 ——
&—— [14]817x663 ——>

rrAn ..

D18. ARCH TO SINGLE ELEMENT RELATIONSHIP

If a 222* solution is taken and the four corner Elements are replaced with one as shown below (which requires recalculation) the result is

interesting.
A2
174 164 W 2(/ 2
e _— . }/§4/ kL
28 51 18 112
43 32
103 15 13 113 14 4 172 57
i @ aie it
60 62 56 66 248
A B c o 240 -

[12] 338 x 277 [9] 69 x 61 redrawn as 122 x }388] 488 x 615 —

1. In a Solution m X n, AB is always 2m - 2n, in this case 122.

2. In above 2 CD is found to be 122 also - if all Elements are multiplied up by two, and the solution shown sideways.
(The pattern may modify slightly - in this case 4 is smaller than 10).

3. In Above 3 the single Element has been replaced with a Pentad.
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Section E explains how above 1 and above 3 are related, but for present purposes EF is found to be 488 or 4 x 122.
4. So all three patterns are linked. In 3, most Elements are the same as those in 1, multiplied by 4.
But in 2 the Elements are different both in value and proportions.
5. No matter what 222* Solution is selected, it is always found that AB CD and EF are identical once suitable up-ratings (often by 2 4 or 8) are
made.
6. Section E shows that the Dimensions of 3 (615 x 488) are readily found from the Dimensions of 1 by applying a formula.
7. But can the Dimensions of 2 (as 122 x 138) be determined by a formula from 1 and/or 3?
Taking m x n as 338 x 277 AB (122) is always found to be 2m - 2n.
In 3 taking m X n as 615 x 488 a quarter of 488 = 122 so clearly this Dimension is related!
What about the other value 69 (x8) - does this relate to 338 x 277 and/or 615 x 48877

D19. A SERIES OF S2223 SOLUTIONS AND ITS RELATIONSHIP

Below is an interesting series starting with [7] 24 x 21 which has sides 2223. By adding Elements at sides 3 and 4 alternately, further
S2223 Solutions for Orders 89 10 11 ... are created.

By the Adding Rule the added Element sizes are seento be 0 (i.e. 3-3),5(i.e.7-2), 3 (i.e. 7-4)and 10 (i.e. 1 +9).

However the values of other Elements alters each time (e.g. 3 and 3 to 5 and 5 to 8 and 7 etc.).

i 10
12 a 3 1
3 3 n 5 2l ° al 8l °
3 9 2 1
9 3 9 > 7 > 11 25 [ 17
6 Add at side 3 .. & side 4 .. & Sid€ 3 e, & side 4 - - -

[7] 24 x 21 (8 x 7)

Surprisingly a definite series connects all the values:-
7] 24 x 21 3 3 <==== Elements
8]40x35550
9]169x619725
101111 x981511473
111187 x 166251789110
12] 297 x 263 41 27 1413 -1 12 11
13] 496 x 441 67 432419 -514 9 23
Looking down the first column of Elements we observe increments of 24 6 10 16 26 ...
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The second column has increments of 22 4 6 10 16 26 ... which + 2 is the natural Fibonacci Series 0of 112 3 58 13 ... where each value is the
sum of the two before it. Note that the other columns have the same series except that some are negative Fibonacci seriesasin31-1-5...
Alternately it is easily seen the values in the first Column (3 59 15 etc.) are the sum of the previous two PLUS 1.
Ditto second Column - sum of the previous two minus 1.
So the Order 14 Solution is easily - the starting inner Elements being 41 + 67 + 1 =109, and 27 + 43 - 1 = 69.

376 [14] 784 x 695
25
408 32 18
11
29
109 40 319
287 69
178

Semi-perimeters 45 75 130 209 353 560 937 1479 2484 3853 6515 10080 17061 26387 44668 69071 116943 180856 306161 473487 .........
So far | have found no formulae directly linking the Dimensions.

D20 DIAD TO PENTAD TO OCTAD

|20 B
13 | 128

A 35
16 13724 17

100 104
Wl |av

What happens when a Diad in a particular solution is replaced by a Pentad, then by an Octad, then by an 11-Add and so on?
Above [12] 353 x 232 with a Pentad end has been selected (see red values) and the Invalid solution [9] 61 x 37 with a Diad calculated (see black
values).
We notice the left hand red Elements are all divisible by 4.

Below the Solution [9] 15 x 11 has been chosen as the simplest Solution containing a Triad and as the Solutions which follow it are so
easy to find. But the general principles mentioned also apply equally well with other solutions.
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\ AV
6 4 6 15 8 1 10
1 L
1 5 9 A E 8 . i 15 — 14
3 T + =+ T ]
/ g ° 1I is% 4
c 6 8 B 9 11 12 14 15
4 6 8 10
[9] 15 x 11 Valid [11] 23 x 17 Invalid [13] 31 x 23 Invalid [15] 39 x 29 Invalid

In Above, the value 1 has been replaced 2, 3 and 4 times vertically and the Invalid Solutions calculated to be [11] 23 x 17
[13] 23 x 17 and [15] 39 x 29. Continuing this series is easily done with the corner Elements increasing each time by 3 and the Dimensions
increasing by eight times six.
1. Now the left Triad in above 1 can be converted into an Octad without the Ratio of 7:1:4 changing (see ABCD).
2. Likewise the Triad Elements 9 8 and 1 in above 2 can be changed into an Octad. Actually an Octad Plus because of the 3 repeated Element
1’s. Now an Octad Plus can be converted into a 14-Add. This gives two Valid solutions from an Invalid one - in fact there are two and only two
Valid solutions ever possible at one time, one with an Order 5 less than the other.
3. From Above 3, the Ihs can be converted by degrees into 22-Add Plus and 28-Add solutions.
4. From Above 4, the Ihs can be converted by degrees into a 28-Add Plus and 34-Add solutions.
Knowing the relationship between Diads and Octads etc. and equating the Algebraic coefficients it is possible to find a Formula linking the two
shaded Elements (above 1) with an Element in the Octad from which the Octad values are easily found. In Above calling x =1 and y = 5 then
new value v1 = (8x + y)/15. Since 13 is not divisible by 15 we have to make nv 13 and up-rate all Elements to the right by 15 to get the new
solution.

An equivalent formula can be found for above 2 converting the Elements 9 8 1 and 1 into a 14-Add Ending. This is found by algebra to be
v2 = (15x + 2y) div 28. In fact there is a series of formulas which follows an easy sequence. | have yet to find and check it however!

Allied to the previous section there is another everlasting series of Solutions which may be created by the adding of Cloaks. A Cloak is 4
Elements added as shown in below 2. A further Cloak is added in Below 3.

156



157

] e

| -

2apxly 1
67/ 19 /6/
A
A

HX‘:[\
\
5
<
\
»

RN

A
AN

16

L\

1 43

[5]5x8 INVALID [9] 69 x 61 [13] 515 x 422

We start with any Solution best not Symmetric. Note that as above it may be sometimes an Invalid one!

We then need to calculate using algebra the same Solution plus a Cloak using x and y (in this case) as shown and [9] 69 x 61 is found (x =
2,y = 15). Adding another Cloak we find [13] 515 x 422 (x = 5, y = 14).
Without explaining why, the link between the values of x and y, and indeed the Elements generally is to triple the value of x in the 2nd solution
and deduct the first value of x. (In the case of Triads it was x4 first - second, i.e. quite similar!).
Thus3x2-1=5and3x5-1=14.
The next in the series is [17] 3573 x 2896 which has x as 13 and 37. Now 3 x 5 - 2 gives 13 and 3 x 14 - 5 = 37. So we can continue the series as
long as we like. Sometimes the values of x and y will reduce giving a Rl greater than 1.

Note above that the lines at A have a distance of 3, and B a distance of 9. Note also in above 1 that the position of insertion of the Triad is
4 from the left and 1 from the right, and that the difference 4 - 1 =3 the value of A. This property is always true. The equivalent value of C in [17]
3573 x 2896 is found to be 24. This series runs 3, 9, 24, 63, 165 ... divided by 3 gives 1,3,8,21,55..

Do you recognize the relationship? Yes?
The Fibonacci series runs 1,1,2,3,5,8,13,21,34,55,89,144... and we omit the alternate values! The Kink Values are actually a multiple of the
alternate F series.

Look at X in Above 2. If we use [9] 61 x 69 as our base and were to add a Cloak at this point the kink value will be 11, which is 36 - 25. The Kink
Values are 11, 33, 88, 231 etc.

D21 HOOK ADD-ONS
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(In this Section we are always dealing with Full Dimensions of Rectangles, and sometimes the Lower Dimension is quoted first. For
instance [7] 24 x 21 and
[7] 21 x 24 are regarded separately and quoted thus).

This section looks at the effect of adding pairs of Elements at the Pole of a Squared-Rectangle. Below 1 is a Diagram where the SR
generated from Pole B down to Pole A happens to be [5] 8 x 3 INVALID. Pole C down to Pole A happens to be [7] 24 x 21. Suppose we add two
Elements BC & CG making the Pole at C. Now the Rectangle is found to be [9] 64 x 66 (i.e. [9] 33 x 32 multiplied by two and reversed). With the
Pole at D [11] 168 x 185 is found and at E, [13] 440 x 497.

Are there relationships?

FE c
D B
C
G\/B
A E

Yes, the series 8, 24, 64, 168, 440 ... does have a relationship. 64 - 24 = 40 and the
series, {8} 16 {24} 40 {64} 104 {168} 272 {440} 712 {1112} ... is easily seen each value being the sum of the previous two!
In order to avoid having to calculate in-between values, it is found that each number happens to be three times the previous number, less the
one before that, i.e.64=24x3-8,168 =64 x 3 - 24, 1112 =440 x 3 - 168 and so on.
Other series can be found from the same original solution CGAB [7] 24 x 21.
Look at above 2 where the Poles start from the left side with AE BE CE & DE ...
The Complexities of these also follow a series with each value the addition of the previous two. We have 21, 66, 185, 497 ...

We would hope that 66 x 3 - 21 would give 185 as in the first series but it gives 177 - 8 less! Likewise 185 x 3 - 66 gives 489, 8 less than the
required 497! Could it be that the next number is 497 x 3 - 185 + this odd value of 8? Yes - it is found to be 1314!

In fact an everlasting series can be found from this particular series by adding 8 each time, but why 8? Is it 8 for other series too? The
Writer soon found others use 8 but the rest not!
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Before assigning mathematics to the dustbin, the series connects backwards to the Invalid Solution [5] 8 x 8 (which reduces to [5] 2 x 2).
This is where the 8 arises.

The Writer has found a series of [7] 21 x 24 [9] 66 x 55 [11]1 177 x 176
[13] 465 x 497 and [15] 1218 x 1339. By knowing the first two of these Solutions only, the 1st Series are easily found e.g. 177 = 66 x 3 -21, 465 =
177 x 3 - 66 and so on. But we need to know of the third in the series [11] 177 x 176 before it is possible to calculate the 2nd series.
176 x 3 - 55 = 473, 24 short of the required 497. Now this 24 comes from [7] 21 x 24 (with apparently has no link back to [5] 8 x 8).
S0,497 =176 x 3 - 55 +24, and 1339 =497 x 3 - 176 +24 !

Annoyingly we cannot find 176 from the two previous Solutions - 55 x 3 - 24 = 141 is 35 short. Isn’t mathematics strange? We simply have
to have to know three initial Solutions for starters!

Some solutions in a Series are found to be Invalid or highly reduced in size.

In this section we consider side 2233 Rectangles with four Elements arranged in such a fashion that they leave a _| shaped piece in the
centre as shown in [9] 66 x 64. Below (which reduces to [9] 33 x 32).

By adding an Element at A [10] 114 x 110 is found. By adding at B [11] 196 x 190 and then at C [12] 324 x 314 ...
By examining each solution in turn, some fascinating things are discovered.
1. Look at Element 2 below. This is the difference in the Dimensions of 66 - 64. In fact the Element in this position is always the difference in
the Dimensions in [10] 114 x 110 this Element becomes 4, in [11] 196 x 190 the Element 6. The Element numbers are 24 6 10 16 26 42 ... each
the sum of the previous two, and in this series twice the Fibonacci series 112 3 5 8 13 etc.

X 30 Y = Dimensions M - N!

36 e D [Z
m\22

—_— o
2 | ez B

38 62
40
28 2\
20

I
18

[9] 66 x 64 full size [10] 114 x 110 [11]196x 190 [12] 324 x 314

2. Can the Dimensions in the series be linked? At first apparently not, but since the Elements are alternately added vertically then horizontally
it becomes evident that we must treat the series as two series, one for odd Orders, and one for even Orders! To establish a formula we need
to calculate the first three Solutions which for the odd Orders are [9] 66 x 64 [11] 196 x 190 [13] 538 x 522 and continue [15] 1434 x 1392 [17]
3780 x 3670 [19] 9722 x 9634 ...

Similar to the add-on in Section D21 we observe that 3 x 196 - 66 = 522 and that 538 is 16 more! Likewise 190 x 3 - 64 is 506 again 16 less than
522!
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So the formula is 3 times the dimension less the previous dimension plus a TOP-UP number which has to be established. Thus e.g. 3780 x
3 -1434 + 8 gives 9722 and so on.
3. By the Adding & Diminishing Rule we know the Element added at A will be 6 i.e. 14 - 8, at B will be 10 i.e. 16 - 6 and so on.
4. In all these types of series, the Reduction Index is always even and therefore at least 2.
5. The Writer was fascinated that where the reduced sizes are concerned [9] 33 x 32 [11] 98 x 95 and [13] 269 x 261 all contain Reciprocal Pairs
for the semi-perimeters throughout. But the Order 10, 12, 14 ... solutions do not! Look at the corner Element 36 above (X) & Element 2 (Y)
which reduce to 18 and 1. These two Elements are Reciprocal. 18% is 324 and 1% is 1. 324 + 1 = 325 which is 65 x 5 (the reduced semi-perimeter
33 + 32). In the Order 15 solution X & Y reduced by factor 2 are 354 and 21 and the Semi-perimeter 1413. Now 3542 = 125316 + 212 = 441. 125316
+ 441 = 125757 = 1413 x 89.
6. In [10] 57 x 55 the X & Y Elements are 30 and 2 for SP of 112. But 30% + 22 is NOT divisible by 112! But 30 squared minus 2 squared is 896
which is 112 x 8! Similarly with [12] 162 x 157 SP 319 where X & Y are 82 & 5. 822 - 52 = 6699 = 319 x 21! Note these coefficients 5, 8,89 & 21 are
all Fibonacci numbers! NB Pairs do not always work using full dimensions for this series.
7. The Dimensions for the Even Order solutions in this series are also calculated thus - 3 times the number less the previous number plus the
TOP-UP In this case 16. 8. For the set of Solutions considered the pairs of Reciprocals are in the same relative positions as shown below. A
with A, B with B etc. Note however these pairings differ with other sets of solutions with sides 2233!

B THE SOLUTION HAS

A RECIPROCAL PAIRS
THEN THE ELEMENTS
WILL PAIR UP AS SHOWN

o CIE

D

(All remaining pairs will
be within the shaded area)

> s
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E. CALCULATING BY LINKS

E1. EXPLANATION OF SECTION & CREATING SOLUTIONS USING ADD-ONS

Creation of large numbers of new solutions by algebra is tiresome and time consuming, but thankfully there are easier ways of doing this
and avoid much algebra.

Once certain types of solutions are known, it is possible to create new ones from them.

The solution which is suitable to be manipulated in some way will be referred to as the Origin and the solution found from the Origin will
be termed the Result.
The Origin is always deemed to be Order [o] with dimensions of m X n and is indicated by [o] m X n.

In the majority of cases the Result can be calculated in terms of m and n only, once the necessary LINKING FORMULA has been
established.

For example the Result might be [0 + 1] 5m - 4n X 4m - 3n indicating that the Order has risen by one.

Sections E1 to E15 all deal with the creation of new solutions from ones already known.

There are so many different devices used it is so confusing! It is like solving a jigsaw in which all the pieces first have to be gradually
found and then grouped into sets of series, before the full picture can be seen!

| have spent hours studying the complicated and bewildering masses of patterns, and have begun to understand the theory as a whole.
There are infinite possible Links, and the quantity far more than expected.

In fact it is not possible to provide more than a proportion of them in this Book.
| have decided it is probably easier to mention my ultimate findings first and then deal with specific Links after. This does not follow the
pattern of perfect mathematics textbooks which gradually builds up the picture from first principles, but the study is confusing however it is
presented. The important paragraphs which follow will not make much sense when first read, but hopeful will make more sense later on in the
text.
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Despite the above paragraph, | have has found basic features which always apply which are not difficult, and once known, these help the
subject to appear a little easier! Two examples are shown below and these are of vital importance in the understanding of this complex
subject. The patterns are parts of a Rectangle.

Simply A can be replaced by B, and C by D (and vice versa) whenever they occur.
In each, one element termed a PLUS (+) is removed and replaced with six as shown. The Elements increase by 5.

Provided these Areas contain exactly

the same Elements, and form

a strictly Symmetric pattern they are
always interchangeable. i.e. a solution

containing C can always be changed to

A B

A can be replaced by B
whenever it occurs as a Symmetric sector
of a Symmetric pattern within a Rectangle.

Any Squared-Rectangle consist of two parts although some Rectangles are entirely IRREGULAR in type.
1. A REGULAR pattern *, with the rest of the Rectangle deemed to be
2. IRREGULAR, even if some or all of it by chance is Regular. This Irregular pattern is a single BLOCK (sometimes two Blocks) and is always
“L” shaped in varying proportions. The Block is shown shaded, and as such may represent any pattern which exists.
There may or may not be PLUS ELEMENTS as well, which must be regarded as being part of the BLOCK, not the Regular part. (NB - A
Symmetric pattern with such an Element added, is always an Irregular pattern if viewed as a whole).
It can be observed that the alterations from one pattern to another (in order to create new solutions) always affects the Regular part only - i.e.
the structure of the Regular part is changed, with the Result still Regular.

This is not that obvious! For example a Triad is not a Regular pattern but a Diad is!

Some patterns which seem Irregular are in fact Regular! Most patterns appear in several possible ways, which can be shown in one fixed
format. The fact that some Elements may have to assume negative values to make the exact format is not a problem.

Link Elements (shown as * below) added inside the Regular Area may seem to destroy the Symmetry, but do not!

D & vice versa, without the Rectangle
failing.




—

*

NN
N

% — /

YES YES NO (unless *is YES
REGULAR PATTERNS? made part of Block)

| have found that the Links form definite Groups although the Groups vary greatly in size from zero to hundreds!

Of these some of them can be joined together to form larger Groups.
How to present these Groups in the easiest and most logical fashion is problematic as there are two or more basic ways of doing this -
1. By Regular patterns with or without a Link Element, is a good division, but then so is -
2. By Patterns of sides S2223 type.

The Reader at this stage is simply informed that Links come in Pairs of Links, and this appears convenient.
Each of the Links are found to fit numerically - i.e. the Links themselves appear sound in theory, but there are many instances where one
will give rise to an undesirable Invalid Solution.

Look at the two patterns below, shown as examples. Whatever Origin gives the Result 1 will also give Result 2 by deletion of A. But clearly
Result 2 with its adjacent elements gives a useless Invalid Solution and is rejected.
The point being stressed is that this actual Rectangle still fits exactly with no gaps remaining, and in this sense is valid.

xThe Second
example
/. A / /is Invalid.

The reader should note the general formats particularly in Order to understand the mass of patterns shown.
Much effort has been made to present these as clearly as possible in logical groups as follows:
Adds E1.1. to E1.6. By adding one external Element.
“E1.7. to E1.10. By adding one internal Element.

Result 1 Result 2
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“E2.1. to E2.4. By adding two Elements.

“E2.5. to E2.6. In addition to these are Add-ons relating to Squared- squares only.
“These are dealt with properly under the Squared-square section H2.

Ends E3. to E7. By using special endings (groups of 5, 8,... elements).

“ E4. 1st series ES. 2nd series E6. 3rd series

“ET7. 4th series. E8. 5th series E9. 6th series

“E10. 7th series E11. 8th series E12. 9th series

Joins E13. to E15. By joining parts of two known Rectangles together with extras.
The two parts may be the same used twice, or both different.

Trial E16. By trial and error processes.

The ADD-ONS are better understood by drawings rather than by writing.
Throughout Section E, wherever an Element is added, it will be observed that the size of that Element is always the same as the line length it
came from due to the Add and Deduct Rule earlier defined in D8.

A Diad B Diad+ C Double D Double+
| L - il F— E Triple F Triple +

R s g e s e e
— A B C D E
—| | | A B C D Pentad

! _] | || |__ |__ |

I F O - E Pentad + F Octad G Octad + H All others
| | | irregular
A B C D E F G H all others

2223 - AAAA >> S2224 - AAAZ S2223 - BAAA S2223 - ABAA S2223 - AABA

Consider any S2224 (or S2225, $S2226, S2227...) solution - ABCD Below. If an Element S is added at EFGH and the four corner Elements
expanded, a new Rectangle an Order one higher is produced.

Careful inspection shows the whole border increases by S all round and that the result is a true Rectangle.
Below 1 is converted to below 2 by adding 110 (51 + 59).
Investigation confirms that the Reduction Index in the Result is always the same. Also it is found that solutions go from Invalid to Invalid;
Imperfect to Imperfect and Perfect to Perfect.

In other words the status of the Result is the same as the Origin! If the Origin is called [o] m x n, m being normally deemed greater than n,
then the new Element at EFGH is found to be 2 x (m - n) and the Result is [0 + 1] 5m - 4n X 4m - 3n.
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ADD-ON 222x TO 2223

259
175 | 149} 1 285 FROM [12] 324 X 269 TO
e 29190 ELEMENTS 13] 544 x 489
gq 13 132 AS LEFT
159 204 23(
== i 110 N3
W | X
| ‘ S ALGEBRAIC PROOF THAT
A B THE PROCEDURE ALWAYS
S __ | WORKS & THE COMPARATIVE SMITH DIAGRAM
- S ALGEBRAIC SIZES FOR 2ND
RPN ﬁD o] mXn PATTERN
| SxS [0+1] 5m-4n X 4m -3n
Y G H Z

This is similar to the Add-on in D3.1. with a Triad at one end. Below shows again that all the outer Elements increase by the amount of the
Add-on, 85. In this example the new solution is 3 x 85 times 2 x 85 bigger, and one Order higher.
In similar solutions where there are any amount of Triads to the left and/or right, a new solution can be created also.
Using endings other than Triads fails. In Below the Element 85 is equivalent to 2m - 3n.

109 94
120 4 209 205 3
124 [ 44 2
1101 a7 | o8 - 41/1 4a| 172 183
80 | 42|43 42 AB
85
[12] 353 x 207 TO [13]608 x 377

- SIMILAR SOLUTIONS BUT WITH FURTHER S TH DIAGRAM
T TRIADS ADDED TO LEFT AND/OR RIGHT IN FOR 2ND PATTERN

ANY AMOUNT ALSO PROVIDE A NEW
RECTANGLE.

[o]m Xn to [0o+1] 7m -9n X 4m - 6n

Yet another variation of D3.1. is apparent when the Rectangles shown are viewed sideways.
It is a D3.1. Add-on with a Triad added at the top (or left in below).

Similar Rectangles with further Triads added will also work.
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In practice this Add-on does not provide many new solutions.
The Order increases by one. The Element 221 below is equivalent to -2m + 3n.

The three Add-ons and their series so far described are all related. Below7 shows how and also provides proof to the validity of each -

Evl 3 E1.3. THE SERIES RIGHT AND/OR
+X T +X LEFT & SERIES UP CAN BE
v T CONTINUED AS FAR AS DESIRED.
+X | X +X
= <=
+ [+X +X R
E1.1. El.%.
<---X--->

Below is an Add-on of this type. Although the Pentad and Diad parts usually need recalculation, the body Elements always keep the same
proportions and shape.

197 +X +.75X
152 122 252

58 83 — 11 +.25x +.5x

48 20.,, 6 204 55 |19 +.25x
104 32 44 X
56 [%4 70 100 145 N +.75X
4 A Y —
[13] 274 x 256 [14] 456 x 449 SHOWING AMOUNTS EACH EXTERNAL

ELEMENT INCREASES BY

The relationship as usual can be proved by algebra. However it is evident by above 3 that the relationship is true as the new Rectangle
becomes 2x greater one way and 1.75x the other.

This Add-on made me aware of many more relationships which are summarized in the next section.

The Formula for this is [0] m X n to [0+1] 4.5m - 49/ 16n X 4m - 2.5n (multiplied by 1 2 or 4).

Below three areas are shown -
1. Body composed of a set of Elements with at least two Elements bordering AB 2. A symmetric format on the left, and
3. A symmetric format on the right.
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The Diad and Pentad Above are examples of symmetric formats - but note that a Triad is not! Whatever formats are applied,
The body area always retains the same proportions (even if it is necessary to multiply all the Elements by a constant) when an additional
Element is added at AB.  Both the formats require recalculation and this can be tricky - but as these forms are not frequent if ones larger
than pentads are used, this is not a major problem.

The principle is the important thing. Note this theory includes most of the Add-ons shown so far, e.g. using two Diads as in E1.1. The
Order increases by one.

GENERAL FORM
2& 3AREBQTH

2 ] 3 SYMMETRIC

A, B

ADDEI]
ELEMBNT

The Formula for this construction is [o)Jm X nto [0 + 1] -7Tm + 16n X -4m + 9n.
232370 2323 ADD-ON

73 172
143 20 | 12 22 131201 219 99 ADDED
8 i 417 | SXOUTER /' /.
n 1 B e ELEMENTS /_*
29 i 29 23 | INCREASE
114 85 Nk 184 12 INNER
ELEMENTS

In some S2323 solutions it is possible to add an Element which straddles the two side Elements as Above, and create a new Rectangle,
one Order higher. Whenever this is done all six outer Elements are increased by the value of the Add-on (e.g. 143 + 99 = 242 and so on, in
above).

The resultant Rectangle is therefore increased by 3 times the Add-on x 2 times the Add-on.
Note it is not essential for the Add-on Element to touch a corner Element as it does above.
The amount of new solutions obtained by this method is poor as most S2323 solutions do not qualify.

Really an extension of the last Add-on, the above is similar to the format in E1.5. except for a Triad ending. But if there are any amount of
repeated Triads on one or both ends a new solution is possible.
The bold Elements show an increase of 220.
The Formula has not been worked.
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332

195

119

76

18

267

83

101

271

290

184

328

19

309

[14] 1088x599

IS

a

e
/
/

\\

415
552
119 76 491 510
18 101 |220 19
83
483 548 529
404 I q

[15] 1968x1039

THE PROPERY HOLDS REGARDLES
OF THE NUMBER OF TRIADS ON Ol
OR BOTH SIDES

10

The Diad endings or repeated Triad endings so far shown can be replaced by any Valid symmetric format e.g. a Pentad one side and an
Octad the other. The adding of an Element as below alters all the values of Elements apart from the shaded areas, but the new solution one
Order higher is always found to fit exactly. (E3.1 explains Pentad etc.).

ANY

ANY

SYM'LE
FORM,

T\

— b

SYM'L

C

D

FORMAT

SAME B SAME
AS f;// //
FORMALL"

c | D

THE ADDED
ELEMENT CAN BE

AS SHOWN, OR

L AS
/ A0RMAT IT MAY BE

TOUCHING LINE A
OR LINE B

NOTE - C & D MAY BE EITHER THE SAME OR DIFFERENT PATTERNS

Below shows a pattern like E1.1 and in fact an Add-on of that type is possible here. This type is much less common and requires 6 or
more Elements along one side and a ‘double arch’ construction as below 3. For S2228+ with a ‘triple arch’ and $222(10)+ with a ‘quadruple
arch’, a further type of Add-on is possible.

There is no limit to this arch idea. In fact a chain series of Add-ons bhecomes possible - Below 2 gives another solution of D3.1. type with
an Add-on at CD. From Below 1 can be found [16] 789 x 705, [16] 759 x 624 and [17] 1299 x 1164. The Formulais [o)] m X nto [o + 1] 31m - 36n X

25m - 29n.
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[15] 453% 369  TO [16] 759 x 624

21 | 226 380 37
83 136 134
85 23
2g | 23 244 |28 243
143
142 18115 6o 108 [
29 {f NE 2 [2
51
A B c 5
*3XT3X] < THIS ADD-ON ONLY WORKS WHERE THE St Lid DUAGHAN FOR

| XA +DX RECTANGLE HAS THIS 'DOUBLE ARCH' PATTEE&OND DIAGRAM
"'4><+l: E+x AND WHERE THERE ARE 2+ ELEMENTS IN A TO B.

: <---x;-> NOTE: TRIPLE ARCH PATTERNS++... GIVE ADD-ONS TOO.

As well as the section E1.6. there are several other forms to be looked at, although they occur much less often.

Look below: if the added Element is size x then the effect on surrounding Elements is shown. e.g. If x was 5 then “+3x” means that the
Element would increase by 15. Below 1 is as E1.6. with an additional Element.
All contain a double arch. All can be converted to another solution by the Add-on in E1.1. Below 2 and 3 only vary in the linking Elements
(marked +0). Obviously these can be extended to 4, 5, 6 rows... each with several combinations of linking Elements

+3X +3X +4X +4X +AX +4X
+0 +0
+X +X +X
+X +X .|.X
g -
/ X +X
) / N 3) // 7 -3 ] bax
i+ ( i \ y
L +X / +X /
Cmmmm X mme> +X /FX
In Adding an element X at /
s
lines shown the Elements / ) /

around increase by the amounts NG G e Xmmmme>
indicated. eg. +X means element increases by the amount of X. Each pattern

can therefore be checked that the Add-On is valid eg in 3 the rectangle increases
hv QX alnnn & hv 7X dnwn  Ninte the +N elemante retain the came valilec
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Another series exists in that the amount of arches can be increased to 3 and then 4 and so on.
There is no need to give for all these and their validity can be proved easily as the pattern above .

ELEMENTS CAN BE ADDED
B 8 HERE TO PRODUCE MORE
SOLUTIONS. THERE ARE

C
MANY MORE PATTERNS
112 1234 WITH EXTRA ELEMENTS
AT A AND/OR B AND/OR C
N ARNLIFC A ADAUCEC

ALSO WITH 5 ARCHES & MORE

E2. ADD-ONS WITH 2 ELEMENTS

* Means the Code refers to a Symmetric Add-on, which is also true for Asymmetric Solutions.
It also means a separate Code has not been allocated for Asymmetric Solutions.

Whenever a Centre-line occurs in a solution 2 Add-ons can be added as below.
Such solutions are found by chance rather than design, and are obviously always imperfect.

It is the only Add-on where no Element increases in size! Many resultant solutions prove to he Compound.
Not surprisingly most examples found are symmetric. (See E2.3).

AB & CD ARE CENTRELINES - MIDWAY BETWEEN TOP & BOTTC

e 13 23
g |5 20 25 21 8 |32
A 32 c D
8 - 292 8 |7 21
P T 17| o |10 O™

[14] 58 x 42 MID SOLUTION TO [16] 79 x 42 MIDPLUS
EACH ASYMMETRIC, BUT MOST EXAMPLES OF THIS SYMMETRIC.

FORMULA -[ol] m X n to [0o+2] m +n/2 X n

Below is an example of this unusual type.

This happens to have a Pentad at each end (both 19, 16, 3, 13 ,29), but any Rectangle with a similar end type and containing the same Elements
can be converted in this way by adding two Elements and increasing the Order by 2..

Note that with different Pentad endings the Add-on does not work. The Formulais [o)]m X nto [0 +2] 3m-2n X2m - n.

170



ASYMMETRICAL

o6
19 |12 61
14
5 30 29 AS q* 71
i 17
16 | 13 | 1° 1316 A 27
12 LEFT T
29 34 3
56
[19] 109 x 64 TO [21] 188 x 176 56 & 56 ADDED.

Below is an example being a more common version of E2.2. Like many Add-ons the internal Elements re remain as before and all outer
ones increase, in this case, by 32. The Order increases by two, and the Formula has been mentioned.

SYMMETRIC ADD-ON
18 | 14 | 5 32 32 & 32
21 53 | 18 14 |52
9 £ ADDED.

H4| g oY 14 9 T

5 19
20 18 | 21 ) 5 -

14 | 18 0

32

M71 72 v A1 QVM TN 1101 127 v 1NR

This type of Add-on is mentioned to complete the list but is of no practical use.

Whatever the status of the original Rectangle, the resultant one is either a useless Zero or Non-zero Rectangle.

A further zero Element is optional at B and Triads could be added ad-infinitum with zeros in between, but unexciting! All are Compound in
reality.

The Formula is [o)] m X n to [0 + 2] or [0 + 3] m X m/2 + n (reversed) followed by m/2+nXm, m+nXm, 1.5m + n X m and so on.
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INVALID ADD-ONS X DENOTES ELEMENTS OF SAME SIZE.

X X A
. X X
A = B C X I
0/7/ ‘ ¢
B
ANY RECTANGLE R, WITH O ANY RECTANGLE
WHERE AB=BC i'—TEE':"ENT HERE WHERE AB=BC

See Below. The Order for the new solution increases by two. See also Squared-squares section for more.

ADD-ON FOR SQUARES AN IMPERFECT SQUARE IS
E F G A PRODUCED BY ADDING
ELEMENTS AT AB & CD
H . /’ THE ELEMENTS ARROWED
$1 HAVE THE SAME VALUED.
J B THE PROCESS CAN BE
REPEATED WITH ELEMENT |
‘ - AND AGAIN... FOR EVER &
|
C D EVER!
The Formula for this is [o] m X n (m =n) to 2m - A X 2m - A where A is the value of the removed corner Element.

Less useful than in E2.6. it can be done in squares of sides S3333 or greater by adding two Elements at lines FG and HJ Above and
suitably extending the bordering Elements. See Squared-squares section.

E3. USING ENDINGS - DEFINITIONS AND GENERAL

In this and later section various endings are given names, some of which can be applied to two ends of a Rectangle or one, as required.

The term Arch is applied to Elements bordering three sides of a Rectangle, and Frame to Elements covering four sides as shown below. In
addition to the single Elements is an “L” shaped piece called the body.

Thus a Pentad-arch consists of 7 Elements and a Diad-frame of 5 Elements, and so on.
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Other endings called Septid, Undecad, Fourteenad, Octid, Octud, Nonid, Nonud and Nonod

PENTAD

OCTAD

‘//

8

=8

SEPTAD }SEE

UNDECAD LATER

=

ARCH
|

ENTS
FRAME
e

_

Below some types of arches are shown.

%

.

FOUR-ARCH SEVEN-ARCH

SERIES CONTINUES

WITH 13-ARCH ETC..

NN

TEN-ARCH

/

|ZZ

EIGHT-ARCH  NINE-ARCH
Note the linking Elements which are sometimes necessary (in above 2,3 and 5).
